9. Mechanical Properties of Solids

Physics Smart Booklet Theory + NCERT MCQs + Topic Wise Practice MCQs + NEET PYQs

Mechanical Properties of Solids

Elasticity is the property of the materials by virtue of which the bodies restore their natural shape and size on removal of the external (deforming) forces.

A perfect elastic body is one which completely regains its original form after the removal of the deforming forces e.g., a quartz fibre.

A perfect plastic body is one which does not regain its original form and remains in the deformed state. e.g., wet soil, wax, etc.

Stress

The restoring force developed per unit area of the body, when the body is subjected to a deforming force, is called stress.

Since the restoring force is equal and opposite to the external deforming force, the stress may be measured as the external force acting per unit area.

 $\therefore \text{ Stress} = \frac{\text{external force applied}}{\text{area}}$

Strain

The ratio of change in dimension of the body to its original dimension is called strain.

There are three types of strain.

(a) longitudinal strain =
$$\frac{\text{change in length}}{\text{original length}} = \frac{\Delta}{l}$$

(b) volume strain =
$$\frac{\text{change in volume}}{\text{original volume}} = \frac{\Delta V}{V}$$

(c) shearing strain is the ratio of the displacement of a layer in the direction of the tangential force and the distance of that layer from the fixed surface.

Hooke's law

Within elastic limit stress is directly proportional to strain.

i.e., stress
$$\propto$$
 strain or $\frac{\text{stress}}{\text{strain}} = \text{constant}$

This constant is called modulus of elasticity.

Types of modulii of elasticity.

1. Young's Modulus of Elasticity 'Y'

Within elastic limit, the ratio of longitudinal stress to longitudinal strain is called Young's modulus of elasticity.

$$Y = \frac{\text{longitudinal stress}}{\text{longitudinal strain}} = \frac{F/A}{\ell/L} = \frac{FL}{\ell A}$$

Within elastic limit, the normal force acting on a unit cross-sectional area of a wire due to which the length of the wire becomes double, is equivalent to the Young's modulus of elasticity of the material of the wire. If L is the original length of the wire, r is its radius and ℓ the increase in its length as a result of suspending a weight Mg at its lower end

then Young's modulus of elasticity of the material of the wire is $Y = \frac{(Mg / \pi r^2)}{(\ell / L)} = \frac{MgL}{\pi r^2 \ell}$

Unit of $Y : N/m^2$ or pascal Dimensions of $Y : [M^1L^{-1}T^{-2}]$

Increment of length due to own weight

But
$$\mathbf{M} = (\ell \mathbf{A})\rho$$
 $\therefore \Delta \ell = \frac{\ell \mathbf{A} \beta g \ell}{2\mathbf{A}\mathbf{Y}}$ or $\Delta \ell = \frac{\beta g \ell}{2\mathbf{Y}}$

Bulk's modulus of elasticity 'K' or 'B'

Within elastic limit, the ratio of the volume stress (i.e., change in pressure) to the volume strain is called bulk's modulus of elasticity.

K or B =
$$\frac{\text{volume stress}}{\text{volume strain}} = \frac{F/A}{\frac{-\Delta V}{V}} = \frac{\Delta P}{\frac{-\Delta V}{V}}$$

The minus sign indicates a decrease in volume with an increase in stress and vice-versa.

 $\alpha \alpha \ell^2$

Unit of K : M/m² or pascal

Compressibility 'C'

2.

The reciprocal of bulk's modulus of elasticity is defined as compressibility.

 $C = \frac{1}{\kappa}$; SI unit of $C : m^2/N$ or pascal⁻¹

3. Modulus of Rigidity 'η'

Within elastic limit, the ration of shearing stress to shearing strain is called modulus of rigidity of a material

$$\eta = \frac{\text{shearing stress}}{\text{shearing strain}} = \left(\frac{F_{\text{tangential}}}{\frac{A}{\phi}}\right) = \frac{F_{\text{tangential}}}{A\phi}$$

Note : Angle of shear ' ϕ ' is always taken in radians

The energy stored by a member within elastic limit is called elastic potential energy. The Area under the stress shown give within elastic limit will be elastic potential energy.

= Area of triangle ABC =
$$\frac{1}{2}$$

Factor Affecting Elasticity

• Effect of Temperature

 $T \uparrow \Rightarrow Y \downarrow$ Due to weakness of intermolecular force.

When temperature is increased, the elastic properties in general decreases i.e. elastic constants decrease. Plasticity increases with temperature.

For a special kind of steel, elastic constants do not vary appreciably with temperature. This steel is called INVAR steel.

Effect of Impurities

Y slightly increases with impurities. The inter molecular attraction strengthens impurities consequently, external deformation can be more effectively opposed.

Interatomic Force Constant :

k or $k_a = Y \cdot r_0$

 $Y = Young's modulus ; r_0 = interatomic distance under normal circumstances$

Poisson's ratio

When a wire is stretched, its length increases, but at the same time its diameter also decreases. The ratio of change in diameter te the original diameter is called lateral strain within elastic limit. The ratio of change in length to original length is called longitudinal strain. The ratio of lateral strain to longitudinal strain is a constant, characteristic of the material and is called, Poisson's ratio (σ)

:. Poisson's ratio, $\sigma = \frac{1 \operatorname{arc} \alpha}{\operatorname{longitudin} al \operatorname{strain}} =$ $= \frac{\Delta D}{D}$ $\Delta L/L$

The value of σ is found to lie between 0 and 0.5

Application of Elastic Behaviour of Materials :

(1) Crane

Cross-sectional area $A \ge \frac{W}{S_v} = \frac{mg}{S_v}$

 $S_y = y$ ield strength or breaking stress;

W = weight of the object being lifted.

Ans (A)

$$F = YA \frac{At}{t} = 10^{12} \times 1 \times \frac{0.1}{100} = 10^{9} \text{ dyne}$$

2. A spherical ball contracts in volume by 0.01 % when subjected to a normal uniform pressure of 100 atmospheres. The bulk modulus of its material in dyne cm⁻² is
(A) 10×10^{10} (B) 100×10^{2} (C) 1×10^{12} (D) 2×10^{11}
Ans (C)
 $\frac{AV}{V} = \frac{0.01}{100}$
 $p = 100 \times 1.01 \times 10^{10}$ dyne cm⁻²
 $K = \frac{P}{AV} = \frac{100 \times 1.01 \times 10^{10}}{0.00 / 100} = 10^{12}$ dyne cm⁻²
3. A steel ring of radius r and cross-sectional area A is fitted to a wooden disc of radius R(R > r). If Young's modulus is Y, the force with which the steel ring is expanded is
(A) $AV\frac{R}{r}$ (B) $AV(\frac{R-r}{r})$ (C) $\frac{Y}{A}(\frac{R-r}{r})$ (D) $\frac{Yr}{AR}$
Ans (B) : Strain = $\frac{At}{l} = \frac{2\pi R - 2\pi r}{2\pi r} = \frac{R-r}{r}$
Stress = Y × strain = $YA(\frac{R-r}{r})$
4. A light rod of length 2 m is suspended horizontally from the celling of a stationary elevator by means of two vertical wires of equal lengths tied to its ends. One of the wires is made of steel (Y = 2 \times 10^{11} N m⁻³) and is of cross-section 10⁻¹ m². Find the orber is of tracks 2 + 10⁻¹ m². Find the orber is of thes (Y = 10¹ M m⁻³) and is of cross-section 10⁻¹ m², and the orber is of thes (Y = 10¹ M m⁻³) and is of cross-section 10⁻¹ m². Find the orber is a modulue stress in both the wires
(A) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (C)
If stresses in both wires are equal, then $\frac{1}{T_A} = \frac{T_A}{T_A} : \frac{T_A}{T_A} = \frac{A_A}{T_A} = \frac{1}{2} \text{ or } x = 1.33 \text{ m}$
5. In the above problem find the position along the rod at which a weight may be hung to produce equal strain in both the wires
(A) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (A) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (X) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (A) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (A) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (A) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (A) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (A) 1 m (B) 1.5 m (C) 1.33 m (D) 0.75 m Ars (A) 1 m (B) 1.5 m (C) 1.33 m (D)

Again, taking moments about C, we have

$$T_1 x = T_2(2-x)$$
 or $\frac{T_1}{T_2} = \frac{2-x}{x}$... (4)
i.e. $1 = \frac{2-x}{x} \implies x = 1$ m

6. A thick rope of density 1.5×10^3 kg m⁻³ and Young's modulus 5×10^6 Nm⁻², 8 m in length is hung from the ceiling of a room. The increase in its length due to its own weight is

(A)
$$9.6 \times 10^{-5}$$
 m (B) 19.2×10^{-7} m (C) 9.6×10^{-2} m (D) 9.6×10^{-3} m

Ans (D)

$$Y = \frac{W/A}{\Delta L/L} \Rightarrow \Delta L = \left(\frac{W}{A}\right) \left(\frac{L}{Y}\right) = \left(\frac{1.5 \times 10^3 \times A \times 8 \times 10}{A}\right) \left(\frac{4}{5 \times 10^6}\right) = 9.6 \times 10^{-3} \text{ m}$$

Observe that the weight is assumed to act at half the length of the hanging wire.

7. A steel wire of length 20 cm and uniform cross section 1 mm^2 is tied rigidly at both the ends. The temperature of the wire is altered from 40°C to 20°C. The coefficient of linear expansion for steel is $1.1 \times 10^{-5} \text{ K}^{-1}$ and the Young's modulus of steel is $2.0 \times 10^{11} \text{ Nm}^{-2}$. The change in tension of the wire is (A) 22 N (B) 44 N (C) 16 N (D) 8 N

Ans (B)

8.

Thermal tension, F = YA $\alpha \Delta \theta = 2 \times 10^{11} \times 10^{-6} \times 1.1$. $\times 10^{-5} \times 20 = 44$ N

Two wires A and B are made of same material. Their lengths are in the ratio 1 : 2 and their diameters are in the ratio 2 : 1. If they are pulled by the same force, their increase in length will be in the ratio

(A) 2: 1
(B) 8: 1
(C)
$$\Delta L = \left(\frac{F}{A}\right) \left(\frac{L}{Y}\right) = \left(\frac{4F}{\pi d^2}\right) \left(\frac{L}{Y}\right) \propto \frac{L}{d^2}$$

$$\frac{\Delta L_A}{\Delta L_B} = \frac{L_A}{L_B} \left(\frac{d_B}{d_A}\right)^2 = \left(\frac{1}{2}\right) \left(\frac{1}{2}\right)^2 = \frac{1}{8}$$
(D) 1: 4

9. A load of 4 kg is suspended from a ceiling through a steel wire of length 20 m and radius 2 mm. It is found that the length of the wire increases by 0.031 mm, as equilibrium is achieved. If $g = 3.1 \times \pi \text{ ms}^{-2}$, the value of Young's modulus is

(A) 2×10^{12} N m⁻² (B) 4×10^{11} N m⁻²

(C)
$$2 \times 10^{11} \text{ N m}^{-2}$$

(D) $0.02 \times 10^9 \,\mathrm{N \ m^{-2}}$

Ans (A)

Length of the wire is l = 20 mRadius of wire is $r = 2 \times 10^{-3} \text{ m}$ Increase in length is $\Delta l = 0.031 \times 10^{-3} \text{ m}$ $g = 3.1 \times \pi \text{ ms}^{-2}$ Load is $F = \text{mg} = 4 \times 3.1 \times \pi \text{ N}$ Young's modulus of material of wire is $Y = \frac{Fl}{A\Delta l} = \frac{Fl}{\pi r^2 \Delta l}$ $\therefore Y = \frac{4 \times 3.1 \times \pi \times 20}{\pi (2 \times 10^{-3})^2 \times 0.031 \times 10^{-3}} = 2 \times 10^{12} \text{ Nm}^{-2}$

10. A wire elongates by 1 mm when a load W is suspended from it. If the wire gets over a pulley (equally on both the sides) and two weights W each are hung at the two ends, the elongation of the wire will be

 $\therefore \text{ Area of hysterisis loop is } A = A_1 + A_2 - A_3$

 $= 2 \left[\frac{\pi}{4} \times 8 \times 4 \times 10^2 \right] - 8 \times 4 \times 10^2 = 1826.55 \text{ J m}^{-3}$

Total hysterisis loss = $1826.55 \times \text{volume}$ = $1826.55 \times 2000 \times 10^{-6} = 3.653 \text{ J}$

Alliant Academy

NCERT LINE BY LINE QUESTIONS

1.	Which of the following materials is/are close to ideal plastics?			[NCERT, XI Pg. 235]
	(1) Putty	(2) Mud	(3) Steel	(4) Both(1)&(2)
2.	The restoring mechanism in solids can be visua		isualized by taking a m	nodel of
				[NCERT, XI Pg. 236]
	(1) Spring-ball system		(2) Atwood machin	e
	(3) Plum - Pudding		(4) Liquid - Drop	
3.	Bulk modulus is releva	int for		[NCERT. XI Pg.246)
	(1) Solids only	(2) Solid	(3) Fluids	(4) Both (2) & (3)
4.	The strain produced by	a hydraulic pressur	e is called	[NCERT, XI Pg. 238]
	(1) Longitudinal strain		(2) Shearing strain	
	(3) Volume strain		(4) Both(1)&(2)	
5.	The ratio of stress and strain, within proportional limit is called			
				[NCERT, XI Pg. 239]
	(1) Modulus of elasticit	ty	(2) Compressibility	_
	(3) Poisson's ratio	-	(4) Both (2) & (3)	

(a) nature of the material

(b) magnitude of deforming force

<u>16</u>

	· · · · · · · · · · · · · · · · · · ·
	(c) Both (a) & (b) (d) None of these
26.	A steel wire of length <i>l</i> and cross section area A is stretched by 1 cm under a given load. When
	the same load is applied to another steel wire of double its length and half of its cross section
	area, the amount of stretching (extension) is
	(a) 0.5 cm (b) 2 cm (c) 4 cm (d) 1.5 cm
27	Two wires are made of the same material and have the same volume. However wire 1 has
27.	gross soctional area A and wire 2 has gross soctional area 94. If the length of
	vine 1 increases by Ar on applying force E how much force is needed to stratch wire 2 by the
	when I increases by Δt on applying force F, now much force is needed to stretch when 2 by the
	same amount: $(1) 25 E$
	(a) $16 F$ (b) $25 F$ (c) $81 F$ (d) $64 F$
28.	A wire elongates by <i>l</i> mm when a load W is hanged from it. If the wire goes over a pulley and
	two weights W each are hung at the two ends, the elongation of the wire will be (in mm)
	(a) l (b) $2l$ (c) zero (d) $l/2$
29.	A thick rope of density ρ and length <i>L</i> is hung from a rigid support. The Young's modulus of
	the material of rope is Y. The increase in length of the rope due to its
	own weight is
	(a) $(1/4) \rho g L^2/Y$ (b) $(1/2) \rho g L^2/Y$
	(c) $\rho q L^2/Y$ (d) $\rho q L/Y$
30	Which of the following elastic moduli is used to describe the elastic behaviour of object as they
00.	respond to the deforming forces acting on them?
	(a) Young's modulus (b) Shear modulus
	(c) Bulk modulus (d) All of these
21	Which of the following is the correct relation? V = Voung's modulus & C = modulus of
51.	rigidity?
	$(a) \mathbf{V} \in C \qquad (b) \mathbf{V} \times C \qquad (c) \mathbf{V} = C \qquad (d) \text{ None of these}$
20	(a) $\Gamma < G$ (b) $\Gamma > G$ (c) $\Gamma = G$ (d) Note of these
32.	() 1 () 1 () 1 () 1 () () 1 () () 1 () () () () () () () () () () () () ()
	(a) 1 mm of Fig (b) 13.6 mm of Fig (c) 1 0.2×10^{5} N/(-2
22	(c) $1.013 \times 10^{6} \text{ N/m2}$ (d) $2.026 \times 10^{6} \text{ N/m2}$
33.	The ratio of shearing stress to the corresponding shearing strain is called
	(a) bulk modulus (b) Young's modulus
	(c) modulus of rigidity (d) None of these
34.	The potential energy U between two atoms in a diatomic molecules as a function of the
	distance x between atoms has been shown in the figure. The atoms are
	*
	Ĭ \
	\overrightarrow{A} \overrightarrow{B} \overrightarrow{C} \overrightarrow{X}
	(a) attracted when x lies between A and B and are repelled when x lies between B
	and C
	(b) attracted when x lies between B and C and are repelled when x lies between A
	and B
	(c) are attracted when they reach B from C

	(d) are repelled when they reach B from A				
35.	Select the correct statement(s) from the following.				
	I. Modulus of rigidity for a liquid is not zero				
	II. Young's modulus of a material decrease	es with rise in tem	perature		
	III. Poisson's ratio is unitless				
	(a) I only (b) II only (c) I and II	(d) II and III		
36.	A metallic wire of length 2.0 m is elongate	d by 2.0 mm. Area	of cross-section of the wire is 4.0		
	mm2. The elastic potential energy stored in the wire in elongated condition is [voung's				
	modulus of the metallic wire is = 2×10^{11} N	V/m2]			
	(a) 8.23 (b) 0.83	(c) 6.23	(d) 0.63		
37.	Assertion : Bulk modulus of elasticity (k)	represents incomp	ressibility of the material.		
	Reason : Bulk modulus of elasticity is proj	por <mark>tiona</mark> l to chang	e in pressure.		
	(a) Assertion is correct, reason is correct; r	eas <mark>on is</mark> a correct e	explanation for assertion.		
	(b) Assertion is correct, reason is correct; r	eas <mark>on is n</mark> ot a corr	ect explanation for assertion		
	(c) Assertion is correct, reason is incorrect				
	(d) Assertion is incorrect, reason is correct				
38.	A uniform cube is subjected to volume con	mpression. If each	side is decreased by 1%, then bulk		
	strain is				
	(a) 0.01 (b) 0.06	(c) 0.02	(d) 0.03		
39.	Assertion : Identical springs of steel and c	opper are equally	stretched. More work will be done		
	on the steel spring				
	Reason : Steel <u>is more elastic</u> than copper.				
	(a) Assertion is correct, reason is correct; r	eason is a correct e	explanation for assertion.		
	(b) Assertion is correct, reason is correct; r	eason is not a corr	ect explanation for assertion		
	(c) Assertion is correct, reason is incorrect				
10	(d) Assertion is incorrect, reason is correct	formed in a multipal to	a suring of this material them is a		
40.	decrease in the crosssectional area by 1%	The percentage in	a wire of this material, there is a		
	(a) 1% (b) 2%	(c) 2 5%	(d) 4%		
41	A 5 metre long wire is fixed to the ceiling.	A weight of 10 kg	is hung at the lower end and is 1		
11.	metre above the floor. The wire was elong	ated by 1 mm. The	energy stored in		
	the wire due to stretching is				
	(a) zero (b) 0.05 joule (c) 100 joule	(d) 500 joule		
42.	A wire suspended vertically from one of it	ts ends is stretched	by attaching a weight of 200N to		
	the lower end. The weight stretches the w	ire by 1 mm. Then	the elastic		
	energy stored in the wire is	5			
	(a) 0.2 J (b) 10 J (c) 20 J	(d) 0.1 J		
43.	A spherical ball contracts in volume by 0.0	2% when subjecte	ed to a pressure of 100 atmosphere.		
	Assuming one atmosphere = 105 N m^{-2} , th	e bulk modulus of	the		
	material of the ball is				
	(a) $0.02 \times 10^5 \mathrm{N/m^2}$ (b) $0.02 \times 10^7 \mathrm{N/m^2}$	2		
	(c) $50 \times 10^7 \mathrm{N/m^2}$ (d) $50 \times 10^9 \text{N/m}^2$			
44.	The bulk moduli of ethanol, mercury and	water are given as	0.9, 25 and 2.2 respectively in		
	units of 109 Nm-2. For a given value of pr	essure, the fraction	nal compression in		
	volume is $\frac{\Delta V}{\Delta V}$. Which of the following sta	tements about $\frac{\Delta V}{\Delta V}$	- for these three liquids is correct?		
	V V V V V V V V V V V V V V V V V V V	V	meet mee nquius is contect.		
	(a) Ethanol > Water > Mercury				
	(b) Water > Ethanol > Mercury				

www.alliantacademy.com (a) Hammering and annealing (b) Change in temperature (c) Impurity in substance (d) All of the above 6. A thick rope of density r and length L is hung from a rigid support. The Young's modulus of the material of rope is Y. The increase in length of the rope due to its own weight is (b) $(1/2) \rho g L^2/Y$ (a) $(1/4)\rho gL^2/Y$ (c) $\rho g L^2/Y$ (d) $\rho g L/Y$ 7. The young's modulus of a wire of length L and radius r is Y N/m^2 . If the length and radius are reduced to L/2 and r/2, then its young's modulus will be (b) Y (a) Y/2(d) 4Y (c) 2Y 8. A steel wire of length *l* and cross section area A is stretched by 1 cm under a given load. When the same load is applied to another steel wire of double its length and half of its cross section area, the amount of stretching (extension) is (a) 0.5 cm (b) 2 cm (c) 4 cm (d) 1.5 cm 9. Hooke's law states that (a) stress is directly proportional to the strain (b) stress is inversely proportional to the strain (c) stress is proportional to Young's modulus (d) stress and strain are independent of each other A force of 6×10^6 Nm⁻² is required for breaking a material. Then density r of the material is 3×10^3 kg m⁻ 10. ³. If the wire is to break under its own weight, the length of the wire made of that material should be (take $g = 10 \text{ ms}^{-2}$) (a) 20 m (b) 200 m (c) 100 m (d) 2000 m The length of a metal is ℓ_1 when the tension in it is T_1 and is ℓ_2 when the tension is T_2 . The original length 11. of the wire is (b) $\frac{\ell_1 T_2 + \ell_2 T_1}{T_1 + T_2}$ (c) $\frac{\ell_1 T_2 - \ell_2 T_1}{T_2 - T_1}$ (d) $\sqrt{T_1 T_2 \ell_1 \ell_2}$ (a) $\frac{\ell_1 + \ell_2}{2}$ Which of the following substance has the highest elasticity? 12. (a) Steel (b) Copper (c) Rubber (d) Sponge A wire breaks when subjected to a stress S. If ρ is the density of the material of the wire, then the length 13. of the wire so that it breaks by its own weight is $(c)\frac{gS}{\rho}$ (d) $\frac{S}{\rho g}$ (b) $\frac{\rho g}{c}$ (a) ρgS 14. The breaking stress for a wire of unit cross section is called its (a) yield point (b) tensile strength (c) elastic fatigue (d) young's modulus 15. The value of tan $(90^\circ - \theta)$ in the graph gives Strain Stress -(a) Young's modulus of elasticity (b) compressibility (d) tensile strength (c) strain The pressure that has to be applied to the ends of a steel wire of length 30 cm to keep its length constant 16. when its temperature is raised by 150°C is: (For steel Young's modulus is 2×10^{11} Nm⁻² and coefficient of thermal expansion is $1.1 \times 10^{-5} \text{K}^{-1}$) (a) 3.3×10^8 Pa (b) 3.3×10^6 Pa (c) 3.3×10^4 Pa (d) 3.3×10^5 Pa

17.	The force exerted b	by a special compre-	ssion device is give	n as function of compression x as	
	$F_x(x) = kx(x-\ell)$ for $0 \le x \le \ell$, where ℓ is maximum possible compression and k is a constant. The force				
	exerted by the device under compression is maximum when compression is –				
10	(a) 0	(b) $\ell/4$	(c) $\ell/2$	(d) $\ell/2$	
18.	What per cent of lengt $(V = 1 \times 10^{11} \text{ N/m}^2 \text{ and}$	th of wire increases by	applying a stress of 1	kg weight/mm ² on it?	
	$(Y = 1 \times 10^{11} \text{ N/m}^2 \text{ an})$	a 1 kg weight = 9.8 ne (b) 0.0098%	(c) 0.0088%	(d) 0.0078%	
19.	There are two wire of	same material and sa	me length while the di	ameter of second wire is two times the	
	diameter of first wire,	then the ratio of exten	sion produced in the w	ires by applying same load will be	
	(a) 1 : 1	(b) 2 : 1	(c) 1 : 2	(d) 4 : 1	
20.	A metallic rod breaks	when strain produced	is 0.2%. The Young's	modulus of the material of the rod is	
	7×10^9 N/m ² . What sh	nould be its area of cros	ss-section to support a	load of 10 ⁴ N?	
01	(a) $7.1 \times 10^{-8} \text{ m}^2$	(b) $7.1 \times 10^{-6} \text{ m}^2$	(c) $7.1 \times 10^{-4} \text{ m}^2$	(d) $7.1 \times 10^{-2} \text{ m}^2$	
21.	10 break a wire, a for	ce of 10° N/m ² is requ	ined. If the density of	the material is 3×10^3 kg/m ³ , then the	
	(a) 34 m	(b) 30 m	(c) 300 m	(d) 3 m	
22.	Two wires are made of	of the same material an	id have the same volur	ne. However wire 1 has cross-sectional	
	area A and wire 2 has	cross-sectional area 34	A. If the length of wire	1 increases by Δx on applying force <i>F</i> ,	
	how much force is nee	eded to stretch wire 2 b	by the same amount?		
	(a) 4 <i>F</i>	(b) 6 <i>F</i>	(c) 9 <i>F</i>	(d) <i>F</i>	
23.	The Young's modulus	s of a perfectly rigid bo	ody is		
24	(a) unity	(b) zero	(c) infinity $1 \operatorname{area} \operatorname{of} 50 \operatorname{mm}^2 \operatorname{atrata}$	(d) some finite non-zero constant	
24.	is hung from its lower	end. Young's modulu	s of iron rod is	ned by 0.5 min, when a mass of 250 kg	
	(a) 19.6×10^{20} N/m ²	(b) $19.6 \times 10^{18} \text{ N/m}^2$	(c) $19.6 \times 10^{10} \text{ N/m}^2$	(d) 19.6×10^{15} N/m ²	
25.	A force of 10 ³ newton	, stretches the length o	f a hanging wire by 1 r	millimetre. The force required to stretch	
	a wire of same materia	al and length but havin	g four times the diame	ter by 1 millimetre is	
	(a) 4×10^3 N	(b) 16×10^3 N	(c) $\frac{1}{4} \times 10^3$ N	(d) $\frac{1}{16} \times 10^3 \mathrm{N}$	
26	An elevator cable is t	o have a maximum str	4	16 allow for appropriate safety factors. Its	
20.	maximum upward acc	eleration is 1.5 m/s^2 . If	the cable has to suppor	t the total weight of 2000 kg of a loaded	
	elevator, the area of c	ross-section of the cab	le should be :		
	(a) 3.28 cm ²	(b) 2.38 cm ²	(c) 0.328 cm ²	(d) 8.23 cm^2	
27.	A uniform heavy rod	of mass 0.2 kg, cross-	sectional area 'a' and le	ength l is hanging from a fixed support.	
	Young's modulus of the	ne material of the rod is	Y. Find the elongation	of the rod. [Neglect lateral contraction]	
	(a) $\frac{\ell}{5 N}$	(b) $\frac{5\ell}{N}$	(c) $\frac{\ell}{N}$	(d) $\frac{3\ell}{2N}$	
28	SaY A uniform wire (Vour	ar a^{2} modulus 2×10^{11}	aY Jm^{-2} is subjected to be	8aY	
20.	2 . If the overall volume	e change in the wire is	0.02%. the fractional d	ecrease in the radius of the wire is close	
	to:				
	(a) 1.0×10^{-4}	(b) 1.5×10^{-4}	(c) 0.25×10^{-4}	(d) 5×10^{-4}	
29.	A structural steel rod h	as a radius of 10 mm a	nd length of 1.0 m. A 1	00 kN force stretches it along its length.	
	Young's modulus of s	tructural steel is 2×10^{-10}	0^{11} Nm ⁻² . The percentage	ge strain is about	
20	(a) 0.16%	(b) 0.32%	(c) 0.08%	(d) 0.24%	
30.	is in the effect of temperat	ture on the value of Y	oung s modulus of elas	suchy for various substances in general	
	10				

	(a) it increases with	increase in temperature	(b) it rema	ains constant	
	(c) it decreases with	rise in temperature			
	(d) it sometimes increases and sometimes decreases with temperature				
	Topic 2: Bulk	& Rigidity Modu	lus and Work	done in Stretching a Wire	
31.	If in a wire of You	ng's modulus Y, longitu	dinal strain X is pro	oduced, then the value of potential energy	
	stored in its unit vol	lume will be			
	(a) Y X ²	(b) 2 Y X ²	(c) $Y^2 X/2$	(d) Y X ² /2	
32.	A beam of metal s	supported at the two ed	ges is loaded at th	e centre. The depression at the centre is	
	proportional to				
	(a) Y^2	(b) Y	(c) 1/Y	(d) $1/Y^2$	
33.	The only elastic mo	dulus that applies to flui	ds is		
	(a) Young's modulu	is (b) shear modulus	(c) modulus of rig	gidity (d) bulk modulus	
34.	When a pressure of	100 atmosphere is appli	ied on a spherical ba	all, then its volume reduces to 0.01%. The	
	bulk modulus of the	e material of the rubber in	n dyne/cm2 is		
25	(a) 10×10^{12}	(b) 100×10^{12}	(c) 1×10^{12}	(d) 10×10^{12}	
35.	If a rubber ball is ta	ken at the depth of 200 r $10m/c^2$ then	n in a pool, its volut	me decreases by 0.1%. If the density of the	
	water is 1×10^{9} kg/	m ³ and $g = 10m/s^2$, then	the volume elasticit	y in N/m^2 will be	
26	(a) 10°	$(0) 2 \times 10^{\circ}$	(C) 10 ²	$(d) 2 \times 10^{\circ}$	
30.	the material of the x	vira is	tue to change in its.	length of stretching. The poisson's fatto of	
	$(a) \pm 0.50$	(b) -0.50	$(c) \pm 0.25$	(d) = 0.25	
37	The amount of worl	k done in increasing the	length of a wire thro	hugh 1 cm will be	
57.		VI	VI ²		
	(a) $\frac{1A}{2L}$	(b) $\frac{\Pi L}{2A}$	$-(c) \frac{\Pi L}{2A}$	(d) None of these	
38.	The Young's modul	lus of the material of a v	wire is 2×10^{10} Nm	$^{-2}$. If the elongation strain is 1%, then the	
	energy stored in the wire per unit volume in Jm ⁻³ is				
	(a) 10^6	(b) 10^8	(c) 2×10^{6}	(d) 2×10^8	
39.	A 5 metre long wire	e is fixed to the ceiling. A	weight of 10 kg is	hung at the lower end and is 1 metre above	
	the floor. The wire	was elongated by 1 mm.	The energy stored i	n the wire due to stretching is	
	(a) zero	(b) 0.05 joule	(c) 100 joule	(d) 500 joule	
40.	Two wires of same	diameter of the same m	aterial having the le	ength l and $2l$. If the force F is applied on	
	each, the ratio of the	e work done in the two w	vires will be		
	(a) 1 : 2	(b) 1 : 4	(c) 2 : 1	(d) 1 : 1	
41.	Identical springs of	steel and copper $(Y_s > Y_s)$	(cu) are equally strete	ched. Then	
	(a) less work is don	e on steel spring	(b) less work is d	one on copper spring	
40	(c) equal work is do	one on both the springs	(d) data not comp	blete	
42.	An elastic string of	unstretched length L and	d force constant k is	stretched by a small length x. It is further	
	stretched by another	r small length y. The wor	rk done in the secon	d stretching is :	
	(a) $\frac{1}{2}ky^{2}$	(b) $\frac{1}{2}k(x^2+y^2)$	(c) $\frac{1}{2}k(x+y)^2$	(d) $\frac{1}{2}ky(2x+y)$	
12	<i>L</i> If a spring autonda l	$\frac{2}{1}$	2 anoral by th	\mathcal{L}	
43.	h a spring extends t	by x on loading, then the	energy stored by the	e spring is (if T is tension in the spring and	
	\mathbf{r}^2	T^2	2	$2\pi^2$	
	(a) $\frac{I}{2}$	(b) $\frac{I}{2I}$	(c) $\frac{2x}{\pi^2}$	(d) $\frac{2I}{I}$	
4.4	Δx	2K			
44.	A spring of force co	onstant 800 N/m has an e	extension of 5 cm. T	ne work done in extending it from 5 cm to	
	15 CIII 18				

	(a) 16 J	(b) 8 J	(c) 32 J	(d) 24 J		
45.	Energy per unit volume in a stretched wire is equal to					
	(a) half of load \times strai	n (b) load \times strain	(c) stress \times strain	(d) half of stress \times strain		
46.	Young's modulus of the material of a wire is Y. On pulling the wire by a force F, the increase in its lengt					
	is x. The potential ene	rgy of the stretched wi	re is			
	(a) $\frac{1}{2}Fx$	(b) $\frac{1}{2}Yx$	(c) $\frac{1}{2}Fx^2$	(d) None of these		
47.	Consider four steel w	vires of dimensions give	ven below ($d = \text{diamet}$	ter and $l = \text{length}$) : Which will have		
	minimum stored poter	ntial energy on pulling	it by same force F?			
	(a) $l = 1m, d = 1mm$	(b) $l = 2m, d = 2mn$	n (c) $l = 2m, d = 1mm$	(d) $l = 1m, d = 2 mm$		
48.	If in a wire of young's	modulus Y, longitudir	nal strain z is produced,	then potential energy stored in its unit		
	volume varies directly	' as				
	(a) $u \propto z$	(b) $u \propto z^2$	(c) $u \propto z^3$	(d) $u \propto z^4$		
49.	A metal rod of Young	s's modulus 2×10^{10} N	m ⁻² un <mark>dergo</mark> es an elasti	c strain of 0.06%. The energy per unit		
	volume stored in Jm ⁻³	is				
	(a) 3600	(b) 7200	(c) 10800	(d) 14400		
50.	Two similar cylinders	having same torsional	rigidity are twisted by	an angle f and 2 f respectively. What is		
	ratio of work done in	twisting them?				
51	(a) 1/2 Dully modulus evicts	(b) 1/4	(c) 3/2	(d) 2/3		
51.	(a) for solid only	(b) liquid only	(a) gasas only	(d) all the above		
52	A metallic wire of len	(b) liquid only oth 2.0 m is elongated	by 20 mm Area of cro	(d) an me above $s_{s-section}$ of the wire is 4.0 mm ² . The		
52.	elastic potential energy stored in the wire in elongated condition is [young's modulus of the metallic wire					
	is = 2×10^{11} N/m ²]	y stored in the wife in		bound is included of the include whe		
	(a) 8.23	(b) 0.83	(c) 6.23	(d) 0.63		
53.	Which of the followin	g is not correct for elas	stic potential energy of	a strained body.		
	1 AY^2					
	(a) $U = \frac{1}{2} L^2 \ell^2$ (b) $U = \frac{1}{2} \times \text{stress} \times \text{strain}$					
				statsking former automaion		
	(c) $U = - \times \text{stress} \times \text{strass}$	am × volume	(d) $U = \frac{-1}{2} \times \text{maximum}$	i stretching force × extension		
54.	A metalic rod of lengt	h <i>l</i> and cross-sectional	area A is made of a ma	aterial of Young modulus Y. If the rod		
	is elongated by an am	ount y, then the work d	lone is proportional to			
	(a) v	(b) $\frac{1}{-}$	(c) v^2	(d) $\frac{1}{2}$		
		y y	(1) 5	y^2		
55.	The Poisson's ratio of	a material is 0.5. If a f	orce is applied to a wire	e of this material, there is a decrease in		
	the cross-sectional are	a by 4%. The percenta	ge increase in the lengt	h is :		
	(a) 1%	(b) 2%	(c) 2.5%	(d) 4%		
56.	The bulk moduli of e	thanol, mercury and w	ater are given as 0.9, 2	5 and 2.2 respectively in units of 109		
	Nm–2. For a given va	lue of pressure, the frac	ctional compression in	volume is $\frac{\Delta V}{V}$. Which of the		
		۸V		v		
	following statements a	about $\frac{\Delta \mathbf{v}}{\mathbf{V}}$ for these three	ee liquids is correct?			
	(a) Ethanol > Water >	Mercury	(b) Water > Ethanol 2	> Mercury		
	(c) Mercury > Ethano	l > Water	(d) Ethanol > Mercur	y > Water		
57.	A material has poisso	n's ratio 0.50. If a unif	form rod of it suffers a	longitudinal strain of 2×10^{-3} , then the		
	percentage change in	volume is				

	(a) 0.6	(b) 0.4	(c) 0.2	(d) Zero	
58.	For a given material	, the Young's modulus	is 2. 4 times that of rig	gidity modulus. Its Poisson	's ratio is
	(a) 2.4	(b) 1.2	(c) 0.4	(d) 0.2	
59.	The upper end of a v	wire of diameter 12mm	and length 1m is clar	mped and its other end is t	wisted through
	an angle of 30°. The	angle of shear is			
	(a) 18°	(b) 0.18°	(c) 36°	(d) 0.36°	
60.	Steel ruptures when	a shear of 3.5×10^8 Ni	m ⁻² is applied. The for	ce needed to punch a 1 cm	n diameter hole
	in a steel sheet 0.3 c	m thick is nearly:			
	(a) 1.4×10^4 N	(b) 2.7×10^4 N	(c) 3.3×10^4 N	(d) 1.1×10^4 N	
	1				
		NEET PREVI	OUS YEARS	QUESTIONS	
1.	Two wires are made	of the same material an	nd have t <mark>he same vol</mark> ur	me. The first wire has cross	s-sectional area
	A and the second w	vire has cross-sectional	l area 3A. If the leng	th of the first wire is incr	eased by $\Delta \ell$ on
	applying a force F, f (a) 9 F	(b) 6 F	led to stretch the second	(d) 4 F	nt? [2018]
2.	The bulk modulus of	a spherical object is 'B	'. If it is subjected to un	niform pressure 'p', the frac	tional decrease
	in r <mark>adi</mark> us is		J	I	[2017]
	$(a) \frac{B}{B}$	(b) $\frac{3p}{2}$	$(c) \frac{p}{p}$	(d) $\frac{p}{p}$	
	^(u) 3p	B	3B	B	
3.	The approximate dep	oth of an ocean is 2700	m. The compressibilit	y of water is 45.4×10^{-11} P	a^{-1} and density
	of water is 10 ³ kg/m	³ .What fractional com	pression of water will	be obtained at the bottom	of the ocean?
	(a) 1.0×10^{-2}	(b) 1.2×10^{-2}	(c) 1.4×10^{-2}	(d) 0.8×10^{-2}	[2013]
4.	The Young's module	us of steel is twice that	t of brass. Two wires	of same length and of sam	e area of cross
	section, one of steel	and another of brass a	re suspended from the	same roof. If we want the	e lower ends of
	the wires to be at the	e same level, then the w	veights added to the ste	eel and brass wires must be	e in the ratio of
	$(a) 2 \cdot 1$	(b) $4 \cdot 1$	(c) $1 \cdot 1$	(d) $1 \cdot 2$	[2015]
5.	Copper of fixed volu	ime 'V; is drawn into w	vire of length ' <i>l</i> '. When	n this wire is subjected to a	constant force
	'F', the extension pr	oduced in the wire is 'l	Dl'. Which of the follo	owing graphs is a straight l	ine?
	1		1		[2014]
	(a) Δl versus $\frac{1}{l}$	(b) Δl versus l^2	(c) Δl versus $\frac{1}{l^2}$	(d) Δl versus l	
6	<i>l</i> When a block of ma	ss M is suspended by a	long wire of length I	the length of the wire bec	some $(I+l)$
0.	The elastic potential	energy stored in the ex	stended wire is :-	, the length of the write bee	NEET-2019]
	(1) Mal	(2) MaI	$(3) \stackrel{1}{\longrightarrow} Mal$	$(1) \frac{1}{Mal}$	
	(1) Mgi	(2) mgL	$\frac{(3)}{2}$	$\frac{(4)}{2}$	
7.	An object kept in a l	arge room having air te	emperature of 25°C tal	kes 12 minutes to cool from	n 80°C to
	70°C. The time take	n to cool for the same of	object from 70° C to 60)°C would be nearly :-	
	(1) 10 min	(2) 12 min	$(3) 20 \min$	(4) 15 min	JUIS ODISSA]
	(-) - •	(_)	(-)	())	
8 .	Two small spherical	metal balls, having eq	ual masses, are made f	from materials of densities	ρ_1 and ρ_2
	$(\rho_1 = 8\rho_2)$ and have	radii of 1mm and 2mm	n, respectively. They a	are made to fall vertically (from rest) in a
	viscous medium who	ose coefficient of visco	sity equals η and who	ose density is 0.1 ρ_2 . The	ratio of their
	terminal velocities w	vould be :-		[NEET – 2019	ODISSA]

1)
$$\frac{79}{72}$$
 2) $\frac{19}{36}$ 3) $\frac{39}{72}$ 4) $\frac{79}{36}$

9. In a U-tube as shown in figure, water and oil are in the left side and right side of the tube respectively. The heights from the bottom for water and oil columns are 15 cm and 20 cm respectively. The density of the oil is :- [take $\rho_{\text{water}} = 1000 \text{ kg/m}^3$] [NEET – 2019 ODISSA]

(1) 1200 kg/m³
(2) 750 kg/m³
(3) 1000 kg/m³
(4) 1333 kg/m³
10. A deep rectangular pond of surface area A, containing water (density= ρ, specific heat capacity=s), is located in a region where the outside air temperature is at a steady value of -26°C. The thickness of the frozen ice layer in this pond, at a certain instant is x. Taking the thermal conductivity of ice as K, and its specific latent heat of fusion as L, the rate of increase

of the thickness of ice layer, at this instant would be given by :- [NEET – 2019 (ODISSA)] 1) $26K / \rho r (L-4s)$ 2) $26K / (\rho x^2 - L)$ 3) $26K / (\rho xL)$ 4) $26K / \rho r (L+4s)$

11. The stress-strain curves are drawn for two different materials X and Y. It is observed that the ultimate strength point and the fracture point are close to each other for material X but are far apart for material Y. We can say that materials X and Y are likely to be (respectively)
 (1) ductile and brittle (2) brittle and ductile (3) brittle and plastic
 (4) plastic and ductile

A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire change to L₁ when mass M is suspended from its free end. The expression for Young's modulus is: [NEET 2020]

1)
$$\frac{MgL}{A(L_1 - L)}$$
 2) $\frac{MgL}{AL}$ 3) $\frac{Mg(L_1 - L)}{AL}$ 4) $\frac{MgL}{AL_1}$

13. Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R). [NEET-2022]

Assertion (A):The stretching of a spring is determined by the shear modulus of the material of the spring Reason (R):A coil spring of copper has more tensile strength than a steel spring of same dimensions. In the light of the above statements, choose the most appropriate answer from the options given below (1) Both (A) and (R) are true and (R) is the correct explanation of (A)

(2) Both (A) and (R) are true and (R) is the not correct explanation of (A)

(3) (A) is true but (R) is false

(4) (A) is false but (R) is true

Using Stress = $Y \setminus$ times Strain

$$\Rightarrow \rho g \delta y = Y \times \frac{\delta l}{y} \Rightarrow \Delta l = \frac{\rho g}{y} \int_0^L y \delta y \quad \Rightarrow \Delta l = \frac{\rho g L^2}{2Y}$$

- 7. (b) Young's modulus of wire does not vary with dimension of wire.
- 8. (c) Young's modulus of elasticity is

$$Y = \frac{F/A}{\Delta L/L} \quad \therefore \Delta L = \frac{FL}{AY}$$

So, $\Delta L \propto \frac{L}{A} \quad \therefore \frac{\Delta L_2}{\Delta L_1} = \frac{L_2}{L_1} \times \frac{A_1}{A_2} = \frac{2}{1} \times \frac{2}{1} = 4$
 $\Delta L_2 = 4 \times \Delta L_1 = 4 \times 1 = 4 \text{ cm}$

9. (a) According to Hooke's Law " for metals within the limit of proportionality, stress applied to the body is proportional to resultant strain i.e., stress \propto strain \Rightarrow stress/strain = E=const. Where the proportionality constant E, is called modulus of elasticity or simply elasticity.

10. (b) Breaking stress =
$$\frac{\text{Force}}{\text{area}}$$

The breaking force will be its own weight.
 $F = mg = V \rho g = \text{area} \times \ell \rho g$
Breaking stress = $6 \times 10^6 = \frac{\text{area} \times \ell \times \rho g}{\text{area}}$ or $\ell = \frac{6 \times 10^6}{3 \times 10^3 \times 10} = 200 \text{ m}$
11. (c) If ℓ is the original length of wire, then change in length of first

11. (c) If ℓ is the original length of wire, then change in length of first wire, $\Delta \ell_1 = (\ell_1 - \ell)$ change in length of second wire, $\Delta \ell_2 = (\ell_2 - \ell)$

Now,
$$\mathbf{Y} = \frac{\mathbf{T}_1}{\mathbf{A}} \times \frac{\ell}{\Delta \ell_1} = \frac{\mathbf{T}_2}{\mathbf{A}} \times \frac{\ell}{\Delta \ell_2}$$
 or $\frac{\mathbf{T}_1}{\Delta \ell_1} = \frac{\mathbf{T}_2}{\Delta \ell_2}$ or $\frac{\mathbf{T}_1}{\ell_1 - \ell} = \frac{\mathbf{T}_2}{\ell_2 - \ell}$
 $\mathbf{T}_1 \ell_2 - \mathbf{T}_1 \ell = \mathbf{T}_2 \ell_1 - \mathbf{T}_2 \ell$ or $\ell = \frac{\mathbf{T}_2 \ell_1 - \mathbf{T}_1 \ell_2}{\mathbf{T}_2 - \mathbf{T}_1}$

- 12. (a) Modulus of elasticity gives the idea of elasticity. For above materials, values of E are: Glass: 50–90GPa
 Rubber:0.01–0.1GPa
 Steel:200GPa
 Copper: 117GPa
- 13. (d) The stress due to this weight is $S = L\rho g$; $\therefore L = \frac{S}{\rho g}$
- **14.** (b) Tensile strength = breaking stress \times area of cross section

15. (a)
$$\tan(90^{\circ} - \theta) = \frac{\text{stress}}{\text{strain}}$$

17.

16. (a) Young's modulus $Y = \frac{\text{stress}}{\text{strain}}$

stress = Y × strain Stress in steel wire = Applied pressure Pressure = stress = Y × strain

Strain =
$$\frac{\Delta L}{L}$$
 = $\alpha \Delta T$ (As length is constant)= 2 × 10¹¹ × 1.1 × 10⁻⁵ × 150 = 3.3 × 10⁸ Pa

(d) For W to be maximum;
$$\frac{dW}{dx} = 0$$
;

i.e. $F(x)=0 \Rightarrow x=1, x=0$; clearly for d=l, the work done is maximum.

18. (b) Stress = 1 kg wt/mm² = 9.8 N/mm² = 9.8×10^6 N/m².

19. (d) :: Both wires are same materials so both will have

same Young's modulus, and let it be Y.

$$Y = \frac{\text{stress}}{\text{stress}} = \frac{F}{A(\Delta L_1)}, F = applied force$$
A = area of cross-section of wire
Now, $Y_1 = Y_2 \Rightarrow \frac{H_1}{(A_1)(\Delta L_1)} = \frac{FL}{(A_2)(\Delta L_2)}$
Since load and length are same for both $\Rightarrow r_1^2 \Delta L_2 = r_2^2 \Delta L_2$. $\left(\frac{\Delta L_1}{\Delta L_2}\right) = \left(\frac{r_1}{r_1}\right)^2 = 4$
 $A_1, : A_1 = 4:1$
20. (c) Maximum possible strain = 0.2/100
 $\therefore A = \frac{F}{V \times strain} = \frac{10^4 \times 100}{(7 \times 10^3 \times 10^2 = 7.1 \times 10^4 \text{ m}^2)}$
21. (a) $\frac{F}{2g} = \frac{10^4}{3 \times 10^3 \times 10^2} = \frac{100}{3} = 34\text{m}$
21. (a) $\frac{F}{2g} = \frac{10^2}{3 \times 10^3 \times 10^2} = \frac{100}{3} = 34\text{m}$
22. (c) As shown in the figure, the wires will have the same Young's modulus (same material) an the length of the wire of area of cross-section 3A will be 1/3 (same volume as wire 1).
For wire 1, $Y = \frac{F/A}{A_X I_1} = \frac{F}{3A} \times \frac{I}{3\Delta x} \Rightarrow F = 9F$
23. (c) For a perfectly rigid body strain produced is zero for the given force applied, so $Y = \text{stress}/\text{strain} = \infty$
24. (c) $Y = \frac{F/A}{A/I/\ell} = \frac{50 \times 10^4}{0.5 \times 10^4} \Rightarrow 19.6 \times 10^1 \text{N/m}^2$
25. (b) $F = Y \times Ax \frac{I}{L} \rightarrow Fx r^2$ (Y, I and L are constant)
If diamect is made four times then force required will be 16 times, i.e., $16 \times 10^3 \text{N}$
26. (a) Given, the breaking strength of cable $f_2 = 7 \times 10^3 \text{ N/m}^2$
27. (c) $T = (L - x) \frac{W}{L}$; clongation $= \frac{TA}{T_1} = \frac{(L - x)W}{LAY}$; Total clongation $= \frac{W}{LAY} \frac{1}{0} (L - x) dx = \frac{WL}{2AY}$
28. (c) Given, $y = 2 \times 10^4 \text{ Nm}^2$; Stress ($\frac{F}{A} \right) = 5 \times 10^3 \text{ Nm}^2$
27. (c) $T = (L - x) \frac{W}{L}$; elongation $= \frac{TA}{T_1} = \frac{(L - x)W}{LAY}$; Total clongation $= \frac{W}{LAY} \frac{1}{0} - \frac{Y}{2AY}$
28. (c) Given, $y = 2 \times 10^4 \text{ Nm}^2$; Stress ($\frac{F}{A} \right) = 5 \times 10^5 \text{ Nm}^2$
27. (c) $T = (L - x) \frac{W}{L}$; elongation $= \frac{TA}{TA} = \frac{(L - x)W}{LAY}$; Total clongation $= \frac{W}{LAY} \frac{1}{0} - \frac{Y}{2AY}$
28. (c) Given, $y = 2 \times 10^4 \text{ Nm}^2$; Stress ($\frac{F}{A} \right) = 5 \times 10^5 \text{ Nm}^2$
27. (a) Given, $F = 100 \text{ km} = 10^5 \text{ N}$

$$Y = 2 \times 10^{11} \text{ Nm}^{-2}; \ f_{w} = 1.0 \text{ m}$$
radius $r = 10 \text{ nm} = 10^{2} \text{ m}$

$$\Rightarrow \text{Strain} = \frac{\text{Stress}}{\text{V}} = \frac{F}{AV} = \frac{10^{2}}{10^{2}} = \frac{10^{3}}{1.4 \times 10^{4} \times 2 \times 10^{11}} = \frac{1}{628}$$
30. (c) We know that interatomic binding energy decreases with temperature. So, more strain is produced at higher temperature. As a result, Y decreases.
31. (d) P.E. = $\frac{1}{2} \times \text{stress} \times \text{strain} \times \text{volume or } (P.E./\text{volume}) = \frac{1}{2} \times (Y \times \text{strain}) (\text{strain})$

$$= \frac{1}{2} Y (\text{strain})^{2} = \frac{1}{2} XX^{2}$$
32. (c) Potential energy stored per unit volume of a wire $= \frac{1}{2} \times \text{stress} \times \text{strain}$

$$Y = \frac{\text{stress}}{\text{strain}} \Rightarrow \text{stress} = Y \times \text{strain} : U = \frac{1}{2} \times YX \times X = \frac{1}{2} YX^{2}$$
33. (d) The depression at the centre is $\delta = \frac{Mgl^{2}}{4bd'Y}$ or $\delta \propto \frac{1}{Y}$
34. (c) $K = \frac{100}{0.01/100} = 10^{9} \text{ atm} = 10^{10} \text{ N/m}^{2} = 10^{12} \text{ dymc}/\text{cm}^{2}$
35. (d) $K = \frac{\Delta P}{\Delta V/V} = \frac{\text{hgg}}{200 \times 10^{2} \times 10} = 2 \times 10^{2}$
36. (b)
37. (a) $W = \frac{1}{2} \times (Y \times \text{strain}) \times \text{strain} \times \text{volume} = \frac{1}{2} (Y \wedge / 1.) (t^{2} - \frac{1}{2} (Y \wedge / 1.) (t^{2})^{2} = \frac{YA}{2L}$
38. (a) $Y = 2 \times 10^{10} \text{ Nm}^{-2}; \frac{\Delta f}{100} = 0.01$
Work done per unit volume $= \frac{1}{2} \times \text{stress} \times \text{strain}^{2} = \frac{1}{2} \text{ Y} (\sum \frac{\Delta f}{L})^{2}$
39. (b) $W = \frac{1}{2} \times F \times t = \frac{1}{2} \text{ mgl} = \frac{1}{2} \times 10 \times 10 \times 1 \times 10^{-3} = 0.05 J$
40. (a) $W = \frac{1}{2} (\frac{\text{Kress}}{2})^{2} \times \text{Volume}$
As F , And Y are same $\Rightarrow W_{v}$ Volume (area is same)
 $W \propto t$ ($V = AI$)
 $\frac{W_{v}}{W_{v}} = \frac{1}{L_{v}} \frac{1}{L_{v}} = \frac{1}{2} \text{ k}^{2} \text{ m}^{2}$
41. (b) Young's modulus of steel is greater than that of copper. Hence, in order to produce same extension, have $f = \frac{1}{2} k^{2} \tan W$ is the done on the steel spring. Cobviously, more work will be done on the steel spring. Cobviously, more work will be done on the steel spring. Cobviously, more work will be done on the steel spring. Cobviously, more work will be done on the steel spring. Cobviously, more work will be done on the steel spring. Cobviously, more work

44. (b) Small amount of work done in extending the spring by
$$dx$$
 is
 $dW = kx dx$
 $\therefore W = K \int_{0.5}^{0.5} xdz = \frac{92}{20} [(0.15)^2 - (0.05)^2] = 8J$
45. (d) Factual question, $u = \frac{1}{2}$ stress × strain
46. (a) When a wire is stretched through a length, then work has to be done, this work is stored in the wire in
the form of elastic potential energy.
Potential energy of stretched wire is
 $U = \frac{1}{2} \times stress \times strain \therefore U = \frac{1}{2} \times F \times s \Rightarrow U = \frac{1}{2} F x$
47. (c) We have, $U = \frac{F^2}{2k}$; where $k = \frac{91}{4} = \frac{17}{4\pi d^2} \Rightarrow U \propto \frac{d^2}{4}$
48. (b) Concept based
49. (a) U / volume = $-\frac{1}{2}$ Y x strain² = 3600 J m⁻³
(b) Concept based
51. (d) Concept based
53. (b) Concept based
54. (c) Volume V = cross sectional A × length *I* or V = AI
Strain = 0.06 × 10⁻²
(c) We donce the section A × length *I* or V = AI
Strain = 0.06 × 10⁻²
(c) Volume V = cross sectional A × length *I* or V = AI
Strain = 0.06 × 10⁻²
(d) Concept based
53. (b) Concept based
54. (c) Volume V = cross sectional A × length *I* or V = AI
Strain = $\frac{Strains}{Original length} = \frac{Y}{1}$
Young's modulus $Y = \frac{Stress}{Strain}$; Work done, $W = \frac{1}{2} \times stress \times strain \times volume$
 $W = \frac{1}{2} \times Y \times (strain)^2 \times AI = \frac{1}{2} \times Y \times (\frac{y}{I})^2 \times AI = \frac{1}{2} (\frac{YA}{I}) y^2 \Rightarrow W \propto y^2$
55. (d) $\frac{\Delta r}{A/I} = 0.5 = \frac{1}{2} \cdot \frac{r}{r} = \frac{1}{2} \frac{AI}{I}$
56. (a) Compressibility = $\frac{1}{Bulk} \mod us$
As bulk modulus is least for ethanol (0.9) and maximum for mercury (25) among ehtanol, mercury and
water. Hence compression in volume Ethanol > Water > Mercury
57. (d) We know
 $(dv/v) = (1 - 2v 0.5) (dL/L)$
 $(dv/v) = (1 - 2v 0.5) (dL/L)$
 $(dv/v) = (1 - (2 \times 0.5)) (dL/L)$
 $(dv/v) = (1 - (2 \times 0.5)) (dL/L)$
 $(dv/v) = (1 - (2 \times 0.5)) (dL/L)$
 $(dv/v) = 0$
58. (d) Y = 2n(1+\sigma)
 $2.4n = 2n(1+\sigma)$
 $2.4n = 2n(1+\sigma) = 1.2 = 1+\sigma \Rightarrow \sigma = 0.2$
59. (b) $r\theta = \theta \Rightarrow \frac{\theta}{0} \frac{\theta}{0} = \frac{6mx \times 3\theta^2}{10} = 0.18^{\circ}$

60. (c)
Shearing strain is created along the side surface of the punched disk. Note that the forces exerted on the disk are exerted along the circumference of the disk, and the total force exerted on its center only. Let us assume that the shearing stress along the side surface of the disk is uniform, then

$$F = \int_{uufbee} dF_{max} - \sigma_{max} 2\pi \left(\frac{D}{2}\right) h$$

$$= 3.5 \times 10^8 \times \left(\frac{1}{2} \times 10^{-2}\right) \times 0.3 \times 10^{-2} \times 2\pi$$

$$= 3.297 \times 10^4 = 3.3 \times 10^4 N$$
NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS
1. (a) Wire 1:

$$\Delta^3 = \left(\frac{F'}{3AY}\right) t$$

$$\Delta^4 = \left(\frac{F'}{3AY}\right) t$$

$$\Delta^6 = \left(\frac{F'}{3AY}\right) t$$

$$\Delta^6 = \frac{F'}{3AY} = \frac{F'}{7} = 9F$$
2. (c) Bulk modulus is given by

$$B = \frac{P}{\left(\frac{NV}{V}\right)} \text{ or } \frac{N}{V} = \frac{P}{B}$$

$$3\frac{AR}{R} = \frac{P}{B} (here, \frac{AR}{R} = fractional decreases in radius) \Rightarrow \frac{AR}{R} = \frac{P}{3B}$$
3. (b) Compressibility of water,

$$K = 454 \times 10^{-11} Pa^{-1}$$
density of water P = 10^3 kg/m^3; depth of ocean, h = 2700 m
We have to find $\frac{AV}{V} = ?$
As we know, compressibility, $K = \frac{1}{B} = \frac{(AV/V)}{P} (P - \rho gh)$
So, $(AV/V) = K\rho gh = 45.4 \times 10^{-11} \times 10^3 \times 10 \times 2700 = 1.2258 \times 10^{-2}$
4. (a) Young's modulus
$$\frac{W}{Y_1} = \frac{W_1}{Y_2} [: A, I, \Delta I$$
 same for both brass and steel]

9.
$$Q = KA\left(\frac{AT}{\Delta x}\right) dt$$
Now, $Q = mL$

$$\therefore mL = KA\left(\frac{AT}{\Delta x}\right) dt$$

$$\therefore mL = KA\left(\frac{AT}{\Delta x}\right) dt$$

$$\therefore mL = \frac{KA[0-(-26)]dt}{x}$$

$$\therefore (\rho A dx)L = KA \frac{[0-(-26)]dt}{x}$$

$$\therefore (\rho A dx)L = KA \frac{[0-(-26)]}{x} dt$$

$$\therefore \frac{dx}{dt} = \frac{26K}{x\rho L}$$
10. $h_1 - h_2 = f_1gh_1 + f_2gh_2 \Rightarrow 20 - 15 = 10(f_1 20 - k_2 / cm^3 \times 15) \Rightarrow \frac{1}{2} = 20f_1 - 15 \Rightarrow 15.5 = 20f_1$

$$\therefore f_1 = \frac{15.5 \times 10^{-2}}{20} = 75 \text{ kg} / \text{ cm}^3 = 750 \text{ kg} / \text{ m}^3$$
11. Ductile materials have a fracture strength lower than the ultimate Tensile strength (i.e., the points are far apart.) whereas in brittle materials, the fracture strength is equivalent to ultimate tensile strength (i.e., the points are close.)
$$\therefore Material X is brittle and Y is ductile in nature.$$
12.
$$Y = \frac{FL}{Ae}$$
; Where $e = L_1 - L$

$$F = mg ; Y = \frac{MgL}{A(L_1 - L)}$$
13. $F = kx$

$$\eta = \frac{stress}{strain} = \frac{F/A}{\phi}$$

Where ϕ is strain