
11.TRANSPORT IN PLANTS

Biology Smart Booklet Theory + NCERT MCQs + NEET PYQs

www.alliantacademy.com

TRANSPORT IN PLANTS

Translocation

Long distance transport occurs through vascular system, xylem and phloem called translocation through mass flow. The direction of translocation may be unidirectional as in case of water and multidirectional as in minerals and organic solutes.

Means of transport (Short distance transport)

The transport of material into and out of the cells is carried out by number of methods. These are diffusion, facilitated diffusion and active transport.

Diffusion

In this system, the molecules move from a region of higher concentration to a region of lower concentration. This process requires no energy.

Factors affecting diffusion: Permeability of membrane, Temperature, pressure, gradient of concentration and the size of substances.

Facilitated diffusion: The diffusion of hydrophilic substances along the concentration gradient through fixed membrane transport protein without involving energy expenditure. For this the membrane possess aquaporins and ion channels. No ATP energy is utilized in this process.

Methods of Facilitated Diffusion:

- **Symport:** Two molecules cross the membrane in the same direction at the same time.
- Antiport: Two molecules move in opposite direction at the same time.
- Uniport: Single molecules moves across membrane independent of other molecules.

Porins: The proteins that form huge pores in the outer membranes of the plastids, mitochondria and some bacteria which allow the small size molecules to pass through.

Aquaporins: Proteins that facilitate diffusion of water molecules through/ across the plasma membrane of cell.

Facilitated Transport

Here, the system moves molecules from a region of higher concentration to a region of lower concentration with the help of a carrier, usually a protein. This process does not require any energy and hence is known as the passive process.

Active Transport

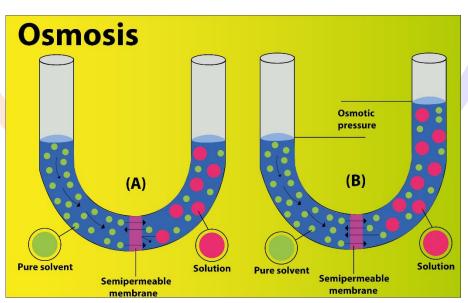
This mechanism transfers molecules from a region of lower to a region of higher

concentration with the help of membrane proteins. This system is termed as active transport because it requires ATP to function.

Water Potential

Water potential is used by the plants to transport water to the leaves that help in carrying out photosynthesis. Solute potential and pressure potential are the two main components of water potential.

Solute potential is also known as osmotic potential and is negative in the plant cell. Pressure potential is positive in the plant cell. Higher the concentration of water in the system, greater will be the water potential.


Osmosis

Osmosis is the movement of molecules from a region of higher concentration to a region of lower concentration across a semi-permeable membrane until an equilibrium is reached.

The plant cell wall is freely permeable to substances in solution and water.

Osmosis is of two types:

- Endosmosis: This is the movement of water molecules enters into the cell when the cell is placed in a hypotonic solution.
- Exosmosis: This is the movement of water molecules out of the cell when the cell is placed in a hypertonic solution.

Isotonic: If the surrounding solution balances the osmotic pressure of cytoplasm, the solution is called isotonic.

Hypotonic: If the external solution is more dilute than cytoplasm, it is hypotonic. The cells swell up when placed in hypotonic solution.

Hypertonic: If the external solution is more concentrated than cytoplasm, it is hypertonic. Cell will shrink in hypertonic solution.

Plasmolysis

Plasmolysis is the shrinkage of the cytoplasm of the cell away from its cell wall under the influence of hypertonic solution. The pressure of plasmolysis is usually reversible when the cell is placed in hypotonic solution.

Turgor pressure

The pressure builds up against the wall due to movement of water inside is called turgor pressure. It is responsible for enlargement and extension growth of cells.

Imbibition

Imbibition is a special type of diffusion when water is absorbed by solid colloids causing them to increase in volume. For example, absorption of water by seeds and dry woods. Imbibition is also a kind of diffusion because movement of water is from higher concentration to lower concentration.

Mass or bulk flow system

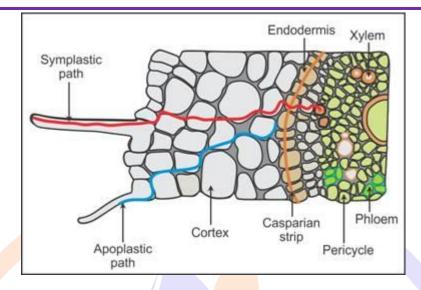
Long distance transport of water in plants takes place by mass or bulk flow system. It is the movement of substance in bulk from one point to another as a result of pressure difference between two points.

Absorption of water by plants

Water is absorbed along with mineral solutes by root hairs by diffusion. The absorbed water passes to deeper layer by two pathways.

Ap<mark>op</mark>last pathway

- It consists of non-living parts of plants body such as cell wall and intercellular spaces.
- There is little resistance in movement of water.
- It is faster.
- Metabolic state of root does not affect apoplast pathway.


Symplast pathway

- It consists of living parts of plant body such as protoplast connected to plasmodesmata.
- Some resistance occurs in the movement of water.
- It is slightly slower.
- Metabolic state of root directly affect symplast pathway.

Casperian strip

The inner boundary of cortex, endodermis is impervious to water due to suberised matrix called Casperian strip. Water molecules are directed through wall regions that are not suberised.

Water flows through the different layers of roots to reach the xylem tissues as follows:

Mycorrhiza

A mycorrhiza is the symbiotic association between a fungus and angiospermic roots. The fungal filaments form a network around the young root to have large surface area that help to absorb mineral ions and water from the soil. The fungus provides minerals and waters and roots in turn provide organic and nitrogen containing compounds.

Vital force theory

Vital force theory was forwarded by J.C. Bose in 1923. This theory believes that the innermost cortical cells of the root absorb water from the outer side and pump the same into xylem channels.

Pressure theory

Root pressure theory was forwarded by Priestley in 1916. Root pressure is positive pressure that develops in the xylem sap of the root of plants. It can be responsible for pushing up water to small heights in plants.

Guttation

Loss of water in liquid phase by herbaceous plants from the tips of leaf blades is known as guttation.

Theory of Capillarity

Water rises in tubes of small diameters, kept in vessels having water due to force of surface tension. Similarly, water rises in the walls of xylem channels due to adhesion and cohesion. This theory is called Theory of Capillarity.

Tension theory

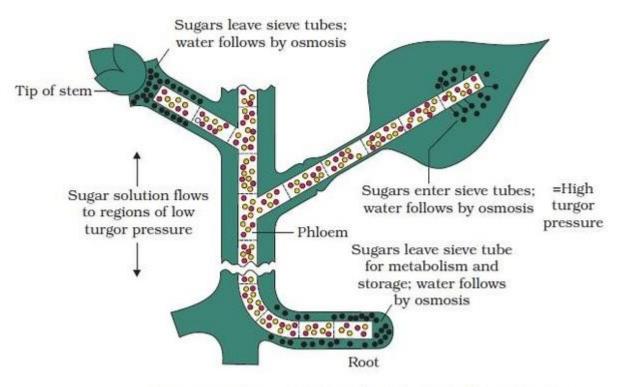
Cohesion Tension theory was put forwarded by Dixon and Joly in 1894. According to this theory water is mostly pulled due to driving force of transpiration from the leaves. The water molecules remain attached with one another by cohesion force. The water molecule does not break in vessels and tracheid due to adhesive force between their walls and water molecules. Because of tension created by transpiration, the water column of plant is pulled up passively from roots to great heights.

Transpiration is the loss of water in the form of water vapour from aerial parts of plants. The following purpose is fulfilled by transpiration.

- Creates transpirational pull for absorption and transport in plants.
- Supplies water for photosynthesis.
- Transport minerals and salts from soil to other parts of plant.
- Cool the leaves and maintain their shape and size.

Photosynthesis is limited by available water. C_4 plants are twice as efficient as C_3 plants in term of fixing carbon. Although C_4 plants uses half as much water as C_3 plants for the same amount of CO_2 fixed.

Uptake and transport of mineral nutrients

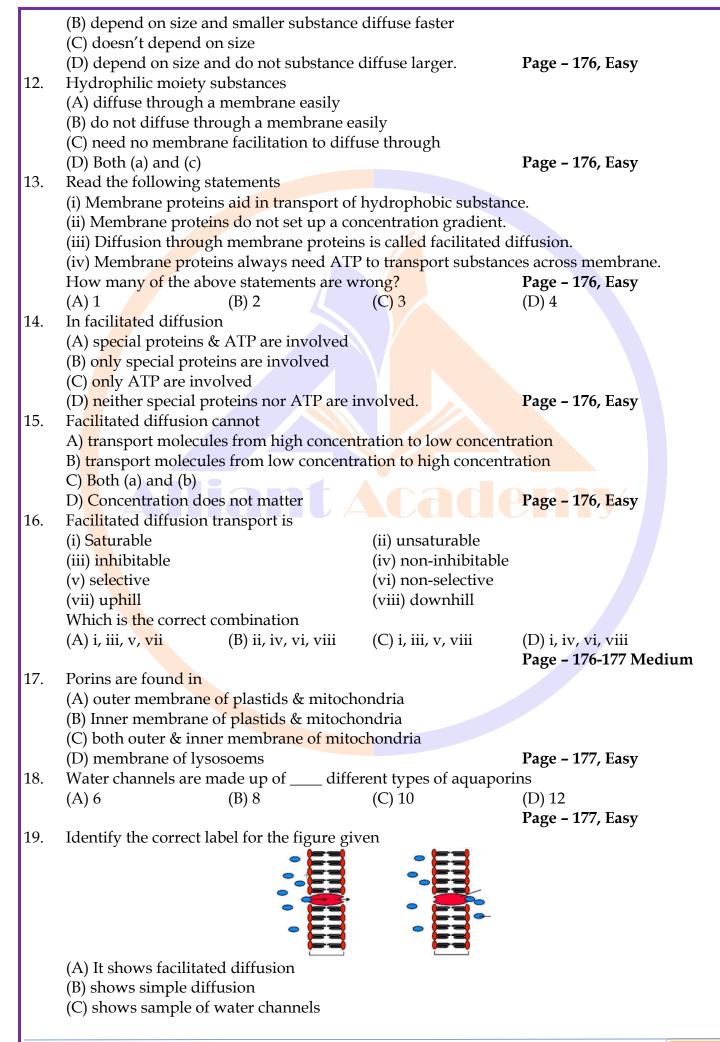

- Most of the minerals enter the roots by active absorption into the cytoplasm of epidermal cells because.
- Minerals are present in the soil as charged particles (ions) which cannot move across cell membranes.
- The concentration of ions in soil is usually lower than concentration in roots.
- Active absorption needs energy in form of ATP. Active uptake of jons is also responsible for water potential gradient in roots.
- Transport proteins of epidermal cells are control point where quantity and type of solutes that reach the xylem is adjusted.
- The ions that reaches to xylem by active or passive transport moves further upward along with transpirational pull.
- The chief sink of mineral elements are growing region of plants like apical meristem, young leaves, growing flower and fruit, and the storage organs.
- Minerals are frequently remobilized from older senescing part of the plants to young growing parts of plant.
- The elements most readily mobilized include phosphorus, Sulphur, nitrogen and potassium. The element like calcium is not mobilized as it is the structural components of plant body.

Phloem transport

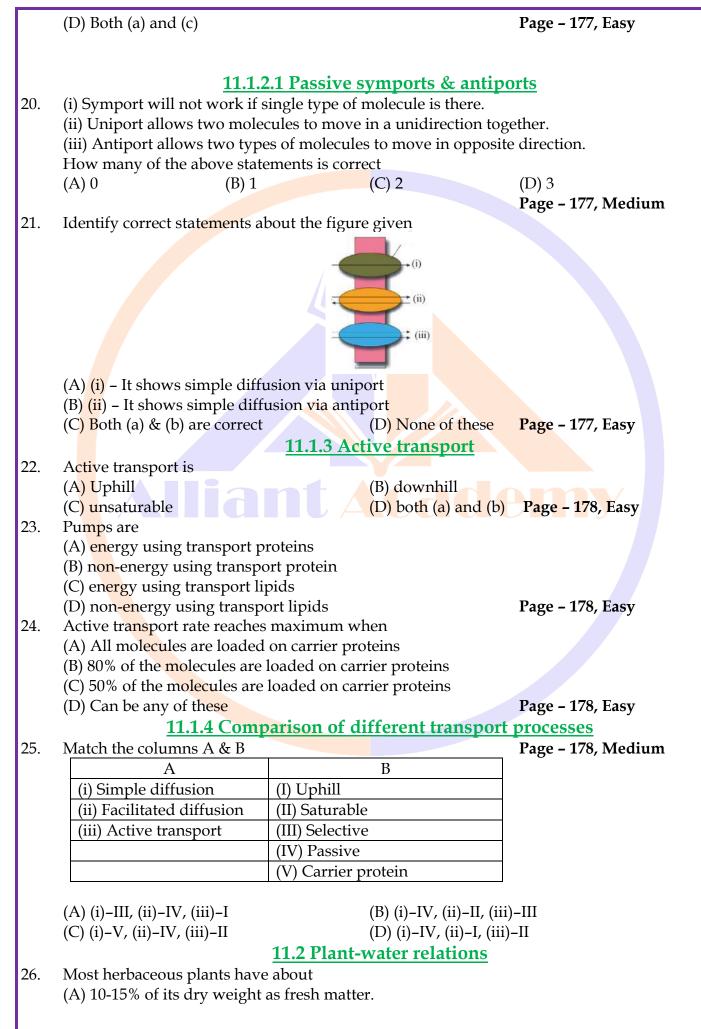
Flow from Source to Sink

- Food (sucrose) is transported by phloem from source to sink. The part of plant that synthesize the food is called source and part where food is used or stored is called sink.
- The source and sink can be reversed by the plants depending upon the season or plant's need. So, the direction of movement in the phloem is bidirectional.

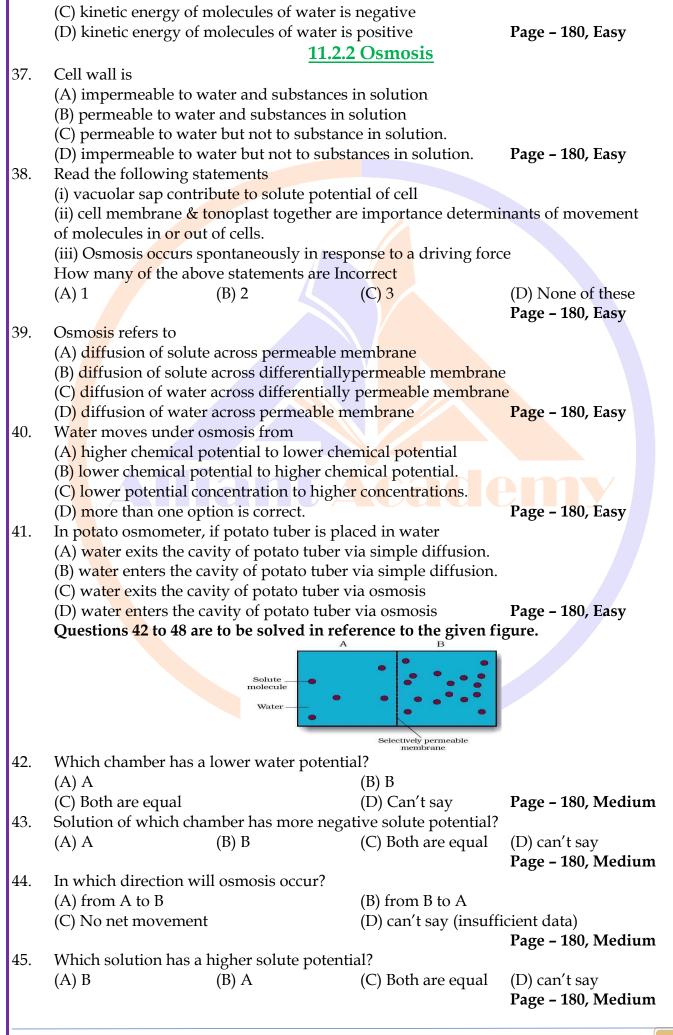
• Phloem sap is mainly water and sucrose, but other sugars, hormones and amino acids are also translocated through it.


Diagrammatic presentation of mechanism of translocation

Pressure flow or Mass flow hypothesis


- It is the most accepted theory for the translocation of sugar from source to sink. Glucose is prepared at source by photosynthesis which is converted into disaccharides (sucrose). Sucrose moves into companion cells and then into sieve tube cells by active transport.
- Loading of phloem at source creates a water potential gradient that facilitates the mass movement in the phloem.
- Sieve tube cells of phloem forms a long column with holes in their wall called sieve plates. Cytoplasmic strands pass through the hole in the sieve plates to form continuous filament. Hydrostatic pressure developed in sieve tube cells moves the sap in the phloem.
- At sink, incoming sugar is actively moved out of the phloem as complex carbohydrates. The loss of solute produces a high-water potential in the phloem and water passes out and returning into xylem.

NCERT LINE BY LINE QUESTIONS Melvin Calvin earned Nobel prize in 1961 for 1. (A) mapping pathway of carbon assimilation in respiration (B) mapping pathway of carbon absorption in photosynthesis (C) mapping pathway of carbon assimilation in photosynthesis (D) mapping pathway of carbon absorption in respiration. **Page – 174, Easy** 2. Cytoplasmic streaming helps to move substances over (A) long distances (B) small distances (C) Both (a) and (b) (D) None **Page – 175, Easy** Translocation is transport over 3. (A) long distance (B) short distance (C) Both long and short distance (D) None of these Page – 175, Easy 4. Transport of minerals in plants is (A) unidirectional only (B) multidirectional (C) Both unidirectional & multidirectional (D) Dependent on the hormones released Page - 175, Easy 5. Nutrients are re-exported from (A) nascent leaves to senescent leaves (B) senescent leaves to nascent leaves (C) all parts to senescent leaves (D) not re-exported Page – 176, Easy 11.1.1 Diffusion 6. Movement by diffusion is (A) active with energy expenditure (B) passive with energy expenditure (D) without energy expenditure (C) both active and passive **Page – 176, Easy** 7. In diffusion, molecules (A) move in a fixed fashion, from high to low concentration (B) move in random fashion, from high to low concentration (C) move in fixed fashion, from low to high concentration (D) move in random fashion, from low to high concentration. Page - 176, Easy 8. Diffusion (A) in solid is more likely rather than of solid (B) of solid is more likely than in solid (C) Both (a) and (b) (D) Does not occur in solids at all. **Page – 176, Easy** 9. Diffusion rates are affected by (A) Concentration gradient (B) pressure (C) temperature (D) All of these **Page – 176, Easy** 10. Statement (A) Diffusion can't occur in dead cell. Statement (B) Diffusion is the only means for gaseous movement in plant body. Choose the best option (A) Statement A is correct and Statement B is wrong (B) Statement A is wrong and Statement B is correct (C) Both are correct (D) Both are wrong **Page – 176, Easy 11.1.2 Facilitated Diffusion** 11. Diffusion rate


(A) depend on size and larger substance diffuse faster

www.alliantacademy.com

(B) 85-90% of its fresh weight as dry matter. (C) 10-15% of its fresh weight as dry matter. (D) 85-90% of its fresh weight as water. Page – 178, Easy 27. Why is water often limiting factor for plant growth & productivity? (B) Due to high photosynthesis (A) Due to high respiration (C) Due to low availability of water (D) Due to transpiration of water Page - 179, Easy **11.2.1** Water potential 28. Kinetic energy possessed by water molecules is represented directly by its (B) water potential (A) pressure potential (D) osmotic potential (C) soluble potential Page - 179, Easy 29. Pure water has (A) Lowest water potential at all pressures (B) Zero water potential at all pressures. (C) Water potential at all pressures highest Page - 179, Easy (D) Both (b) and (c) 30. Water moves from system containing water at (i) to one with (ii) (A) (i) – low Ψ_w , (ii) – high Ψ_w (B) (i) – zero ψ_w , (ii) – zero ψ_w (D) (i) – high Ψ_w , (ii) – low Ψ_w (C) (i) – positive ψ_w , (ii) – zero ψ_w **Page –** 179, Easy 31. Which of the given equations is correct? (A) $\psi_{w} = \psi_{s} + \psi_{p}$ (B) $\psi_{\rm s} = \psi_{\rm w} + \psi_{\rm p}$ (D) $\psi_{\rm p} = \psi_{\rm s} - \psi_{\rm w}$ **Page – 180, Easy** (C) $\psi_{\rm p} = \psi_{\rm s} + \psi_{\rm w}$ 32. Ψ_{s} is (A) always positive (B) always negative (C) sometimes negative (D) mostly zero **Page – 180, Easy** 33. ψ_p is (A) always positive (B) always negative (C) usually positive, sometimes negative (D) usually negative, sometimes positive Page – 180, Easy 34. The more the solute (A) the lower (less negative) the ψ_{n} (B) the higher (less negative) the ψ_{n} (C) the lower (more negative) the ψ_{p} (D) the higher (more negative) the ψ_{p} Page - 180, Easy 35. If pure water (pH = 7) is kept in open vessel at room temperature, its water potential Pure water (B) positive (C) negative (A) zero (D) can't say Page - 180, Easy 36. Water potential represents kinetic energy of water molecules. When $\psi_w = 0$. (A) kinetic energy of molecules of water is zero. (B) kinetic energy of molecules of water is not zero.

		www.alliantacademy.com						
46.	At equilibrium which chamber w	rill have lower water potential?						
	(A) B (B) A	(C) Both are equal (D) Insufficient data Page – 180, Medium						
47.	If one chamber has a ψ of -2000 ?	kPa and the other –1200 kPa, which is chamber with higher ψ						
	(A) B (B) A	(C) C (D) Can't say Page – 180, Medium						
48.	If one of the solutions has $\Psi_{w} = 0$.	.2 Mpa and other has $\psi_w = 0.1$ Mpa what will be direction of						
	water movement?							
	(A) A to B	(B) B to A						
	(C) No net movement	(D)Random movement						
		Page – 180, Medium						
49.	To prevent water from diffusing	in pressure is applied. Which of the following statements is						
	correct?							
		Pressure						
		Sucrose solution						
	Membrane							
	water							
		(a) (b)						
	(A) The more the solute, the greater will be pressure required.							
	(B) The more the solute, the lesser will be pressure required							
	(C) The pressure is equal to osmo							
- 0	(D) Both (a) & (c)	Page – 181, Medium						
50.	Osmotic pressure is (ii) & osmoti							
	(A) (i) – positive, (ii) negative	(B) (i) –negative, (ii) – positive						
	(C) (i), – positive, (ii) – positive	(D) (i) – negative, (ii) – negative						
		Page – 181, Medium						
F 1		<u>11.2.3 Plasmolysis</u>						
51.	Match the columns							
	Α	В						
	(i) Isotonic	I. external solution is more dilute						
	(i) Hypotonic	II. external solution is more concentrated						
	(ii) Hypertonic	III. external solution balances the						
		osmotic pressure of cytoplasm						
		contone pressure or cytophoni						

(A) (i)-I, (ii)-III, (iii)-II (C) (i)-III, (ii)-II, (iii)-I (B) (i)-III, (ii)-I, (iii)-II (D) (i)-II, (ii)-I, (iii)-III

Page - 181, Medium

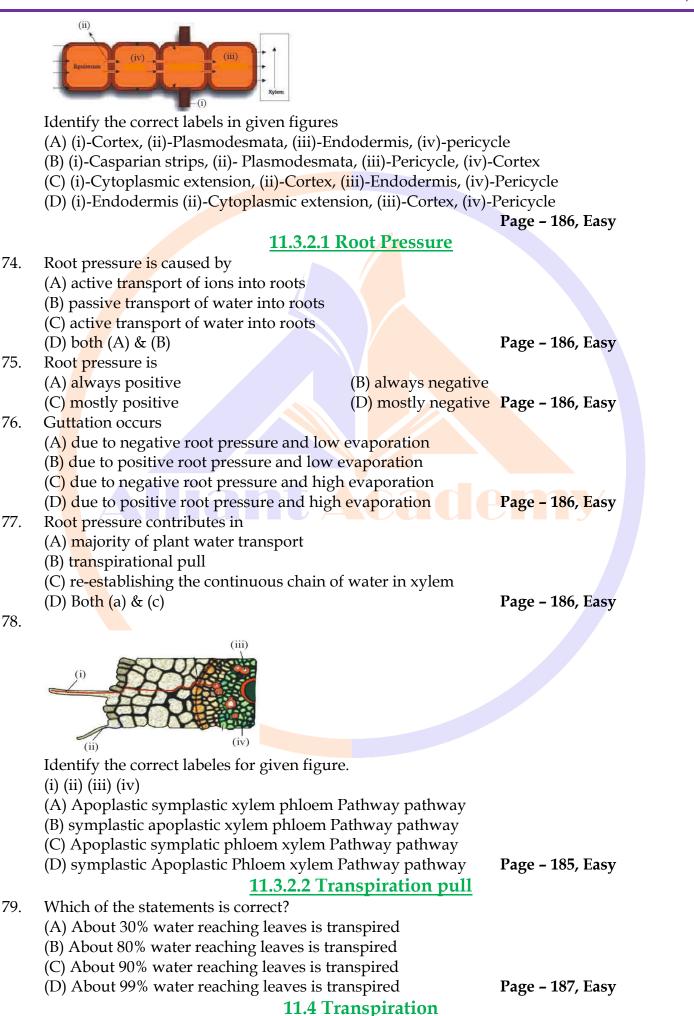
52. Cells

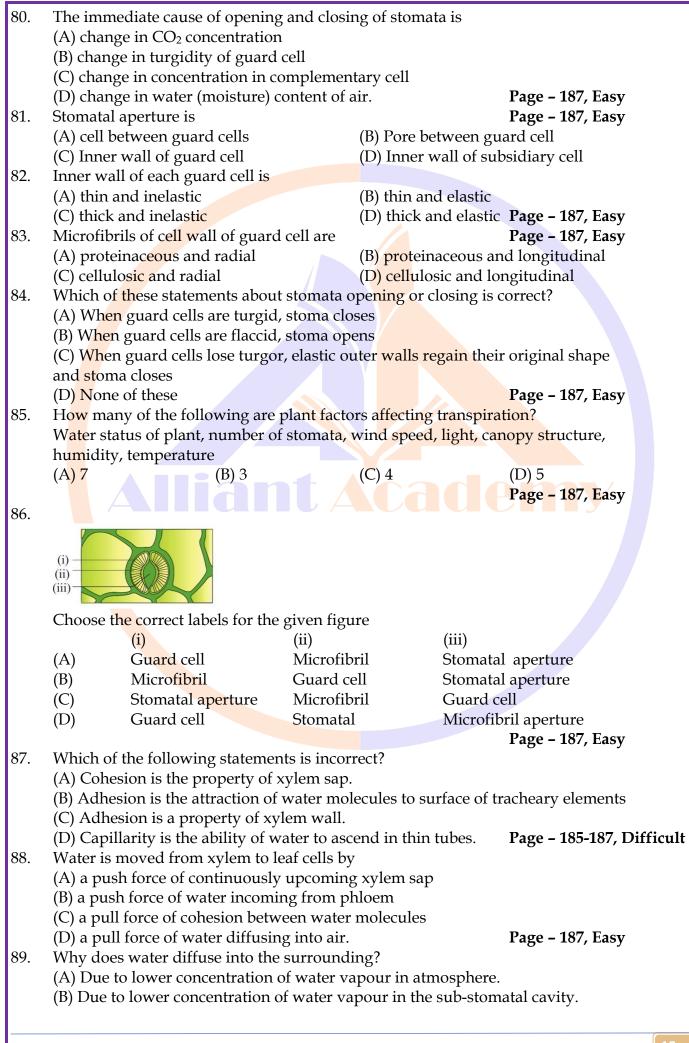
(A) swell in hypotonic, shrink in isotonic

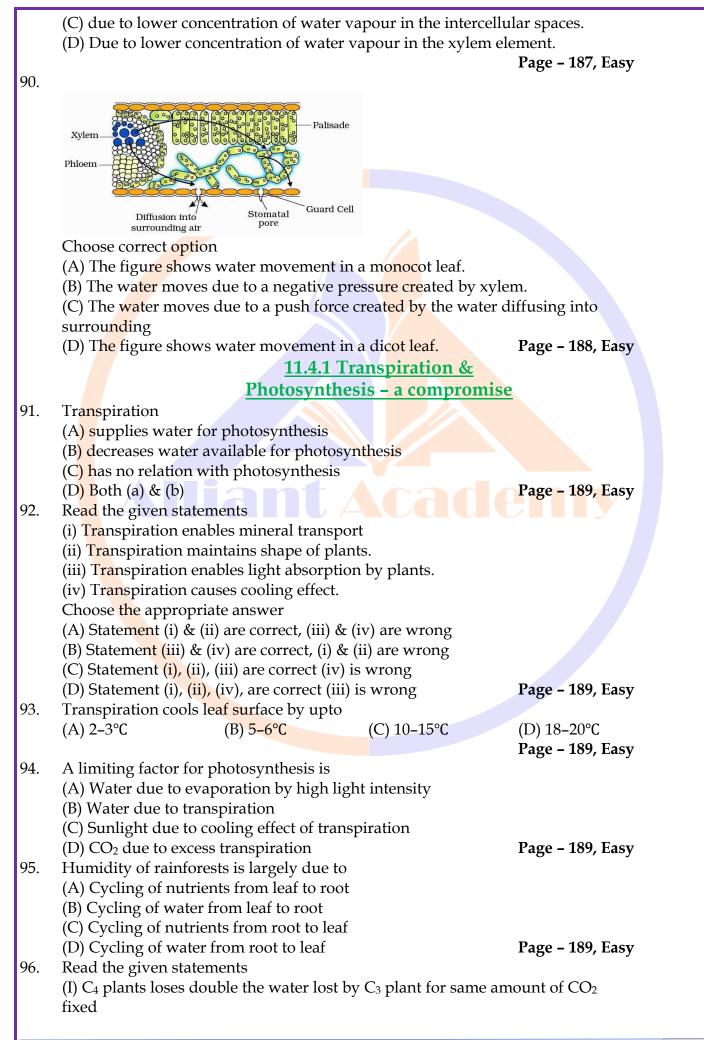
(B) swell in isotonic, shrink in hypertonic

(C) swell in hypertonic, shrink in hypotonic

(D) swell in hypotonic, shrink in hypertonic

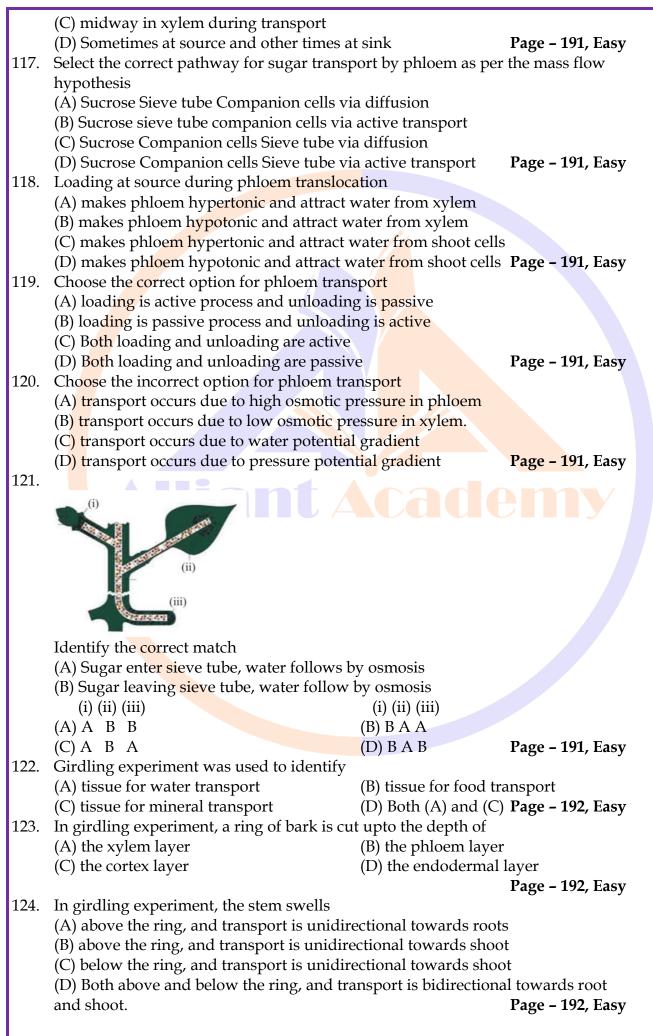

Plasmolysis occurs 53.


(A) in hypotonic solution


Page - 181, Medium

	(B) when water moves into the cell							
	(C) when solution has more solute than	protoplasm						
	(D) when cell membrane becomes turgic	Page – 181, Medium						
54.	When water moves out of a cell placed in hypertonic solution.							
	(A) water is first lost from vacuole, then							
	(B) water is first lost from cytoplasm, the							
	(C) water is first lost from tonoplast, the							
	(D) water is first lost from cytoplasm, th	-	Page – 182, Easy					
55.	Identify A, B & C in given figure.		0					
	A	ВС						
	H ₂ O							
	(A) A – plasmolysed, B – isotonic, C – Tr	urgid						
	(B) B - flaccid, C - hypertonic, A - Turgi	d						
	(C) A – hypotonic, C – hypotonic, B – Tu	ırgid						
	(D) <mark>A –</mark> turgid, B – flaccid, – hyper tonic		Page – 182, Easy					
56.	Th <mark>e p</mark> rocess of plasmolysis is							
	(A <mark>) al</mark> ways irreversible	(B <mark>) alwa</mark> ys reversib	le					
	(C) usually reversible	(D) always tempora	ary Page – 182, Easy					
57.	Pl <mark>an</mark> t cells do not rupture in hypotonic s	olution due to						
	(A <mark>) t</mark> urgor pressure	(B) pressure potent	ial					
	(C <mark>) c</mark> ell membrane	(D) cell wall	Page – 182, Easy					
58.	What will be ψ_{p} of flaccid cell /							
	(A) positive (B) negative	(C) zero	(D) any of the ab <mark>ov</mark> e Page - 182, Medium					
	<u>11.2.</u>	4 Imbibition						
59.	Imbibition <u>11.2.</u>	4 Imbibition						
59.		<u>4 Imbibition</u> (B) is a type of activ						
59.	Imbibition							
59.	Imbibi <mark>tion</mark> (A) Caus <mark>es</mark> reduction in volume	(B) is a type of activ						
59.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient	(B) is a type of activ	ve transport Page – 182, Medium					
59. 60.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient	(B) is a type of activ (D) occurs in gases ance transport of w	ve transport Page – 182, Medium <u>ater</u>					
	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient <u>11-3 Long dista</u>	(B) is a type of activ (D) occurs in gases ance transport of w	ve transport Page – 182, Medium <u>ater</u> ts is called					
	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient <u>11-3 Long dista</u> Bulk movement of substances through v	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan	ve transport Page – 182, Medium ater ts is called sion					
	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient <u>11-3 Long dista</u> Bulk movement of substances through v (A) Active transport	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan (B) Facilitated diffu	ve transport Page – 182, Medium ater ts is called sion					
60.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient <u>11-3 Long dista</u> Bulk movement of substances through v (A) Active transport (C) Transportation	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan (B) Facilitated diffu	ve transport Page – 182, Medium ater ts is called sion					
60.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient II-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow	(B) is a type of activ (D) occurs in gases Ence transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation	ve transport Page – 182, Medium ater ts is called sion					
60.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient II-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation	ve transport Page – 182, Medium ater ts is called sion					
60.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient <u>11-3 Long dista</u> Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at speed depending upon (C) are swept at some pace in suspension (D) Both (A) and (C)	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation	ve transport Page – 182, Medium ater ts is called sion					
60.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient II-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at speed depending upon (C) are swept at some pace in suspension (D) Both (A) and (C) Bulk flow is achieved by	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation	re transport Page – 182, Medium ater ts is called sion Page – 183, Easy					
60. 61.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient II-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at speed depending upon (C) are swept at some pace in suspension (D) Both (A) and (C) Bulk flow is achieved by (A) positive water pressure gradient	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation	re transport Page – 182, Medium ater ts is called sion Page – 183, Easy					
60. 61.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient II-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at some pace in suspension (C) are swept at some pace in suspension (D) Both (A) and (C) Bulk flow is achieved by (A) positive water pressure gradient (B) negative water pressure gradient	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation	re transport Page – 182, Medium ater ts is called sion Page – 183, Easy					
60. 61.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient III-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at speed depending upon (C) are swept at some pace in suspension (D) Both (A) and (C) Bulk flow is achieved by (A) positive water pressure gradient (B) negative water pressure gradient (C) Both (A) and (B)	(B) is a type of activ (D) occurs in gases Ence transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation size.	re transport Page – 182, Medium ater ts is called sion Page – 183, Easy					
60. 61.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient II-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at speed depending upon (C) are swept at some pace in suspension (D) Both (A) and (C) Bulk flow is achieved by (A) positive water pressure gradient (B) negative water pressure gradient (C) Both (A) and (B) (D) It rarely depends on pressure gradient	(B) is a type of activ (D) occurs in gases ance transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation size. ns	re transport Page – 182, Medium ater ts is called sion Page – 183, Easy					
60. 61.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient III-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at speed depending upon (C) are swept at some pace in suspension (D) Both (A) and (C) Bulk flow is achieved by (A) positive water pressure gradient (B) negative water pressure gradient (C) Both (A) and (B)	(B) is a type of activ (D) occurs in gases Ence transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation size. ns	re transport Page - 182, Medium ater ts is called sion Page - 183, Easy Page - 183, Easy Page - 183, Easy					
60. 61. 62.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient 11-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at speed depending upon (C) are swept at some pace in suspension (D) Both (A) and (C) Bulk flow is achieved by (A) positive water pressure gradient (B) negative water pressure gradient (C) Both (A) and (B) (D) It rarely depends on pressure gradient Xylem is associated with translocation of (i) Water	 (B) is a type of activ (D) occurs in gases ance transport of w rascular tissues of plan (B) Facilitated diffu (D) Translocation size. ns ant f mainly (ii) organic solutes 	re transport Page - 182, Medium ater ts is called sion Page - 183, Easy Page - 183, Easy Page - 183, Easy and sucrose					
60. 61. 62.	Imbibition (A) Causes reduction in volume (C) is along the concentration gradient III-3 Long dista Bulk movement of substances through v (A) Active transport (C) Transportation Substances in mass flow (A) are swept at some pace in solution (B) are swept at speed depending upon (C) are swept at some pace in suspension (D) Both (A) and (C) Bulk flow is achieved by (A) positive water pressure gradient (B) negative water pressure gradient (C) Both (A) and (B) (D) It rarely depends on pressure gradient Xylem is associated with translocation on	(B) is a type of activ (D) occurs in gases Ence transport of w vascular tissues of plan (B) Facilitated diffu (D) Translocation size. ns	re transport Page - 182, Medium ater ts is called sion Page - 183, Easy Page - 183, Easy Page - 183, Easy and sucrose					

	(v) inorganic so	lute	(vi) hormones	
	Choose correct		× /	
	(A) i, v, iii	(B) ii, vi, iv	(C) iii, vi, iv	(D) i, ii, iii
				Page – 184, Easy
		11.3.1 How do	plants absorb wate	r?
64.	Absorption of v	vater along with mineral	-	
	-	cilitated diffusion	(B) purely by diffusion	on
	(C) purely by a			
		nation of diffusion and ac	tive transport	Page – 184, Easy
65.		tinuous throughout the p		
	(A) endodermis	;	(B) casparian strips	
	(C) plasmodesn	nata	(D) tracheids	Page – 184, Easy
66.	Apoplastic mov	vement involves		
		e cell membrane	(B <mark>) cros</mark> sing the tono	plast
	(C) crossing the	cell wall	(D) Both (a) and (c)	Page – 184, Easy
67.	Sympl <mark>ast</mark> ic syst	em of cells is connected t	hrough	
	(A) n <mark>ucl</mark> eoplasr	nic strands extending thr	ough <mark>phragmos</mark> omes	
	(B) n <mark>uc</mark> leoplasn	nic strands extending thro	ough <mark>plasmodesmat</mark> a	
	(C) <mark>cyt</mark> oplasmic	strands extending throu	gh ph <mark>ragm</mark> osomes	
		strands extending throu	gh pl <mark>asmod</mark> esmata	Page – 185, Easy
68.	Cy <mark>to</mark> plasmic str	<u> </u>		
		g distance transport	(B) can be seen in Hy	<mark>drilla le</mark> af
	(C <mark>) m</mark> ay be part	of symplastic movement	t (D) Both (B) & (C)	
		lliont		Page – 185, Easy
69.		er flow in roots occurs vi		
		rough living cells	(B) symplast through	
	(C) apoplast thr	ough intercellular spaces	s (D) apoplast through	
70	TA7 .			Page – 185, Easy
70.		nt through root tissues	1 (*	
		ally symplastic and finally	y apoplastic	
		imately apoplastic		
		pletely apoplastic		Daga 105 Fact
71	• •	above is correct.		Page – 185, Easy
71.	Read the given		sistion of us -11-	
		s symbiotic bacterial asso	5	
		helps in water absorption		
		may penetrate root cells		
		may from a network aro statements is correct?	bund young root.	Page - 185 186 Difficult
	(A) 1	(B) 2	(C) 3	Page – 185-186, Difficult
72.	· · /	(D) 2 llowing statements about		(D) 4
12.		vides N-containing comp		
		de minerals & water to m	-	
	• • –	cannot germinate withou	-	
	(D) Both (A) &		at my communa	Page – 186, Easy
			r movement a plant	1 490 100, Luby
73.		11.0.2 vvale1	movement a plain	
15.				



			www.alliantacademy.con				
	(II) C ₄ plants are more efficient in making	sugar than C_3 plants.					
	Choose the best option						
	(A) I and II are correct	(B) I is correct and II	is incorrect				
	(C) I is incorrect and II is correct	(D) Both I & II are in	correct				
			Page – 189, Medium				
	11.5.1 Uptak	e of Mineral Ions	-				
97.	All minerals cannot be passively absorbed						
	(A) They are present as ions which canno	-	nbrane.				
	(B) Concentration of minerals in soil is high						
	(C) Both (a) & (b)						
	(D) all minerals are passively absorbed		Page – 189, Easy				
98.	Which of the given statements is correct a	bout <mark>upt</mark> ake of minera	l ions?				
	(A) Active uptake of ions is helps in uptak	ke o <mark>f wat</mark> er actively					
	(B) Passive uptake of ions helps in uptake	of water actively					
	(C) Active uptake of ions help in uptake of	of w <mark>ater p</mark> assively.					
	(D) Passive uptake of ions help in uptake	of w <mark>ater pass</mark> ively.	Page – 189, Easy				
99.	Ions are absorbed from soil by		Page – 189, Easy				
	(A) active transport only	(B) passive transport	t only				
	(C) mostly passive transport	(D <mark>) both</mark> active & pa	ssive transport				
00.	Th <mark>e tr</mark> ansport proteins embedded in the p	olasma membrane of en	ndodermal cells				
	(A) allow all types of solute to pass to xyl	em.					
	(B) allow some solutes to cross the memb	rane					
	(C) shows no selectively		Page – 189, Easy				
.01.	Quantity & types of solute reaching xyler						
	(A) control points of epidermal cells as the transport starts there						
	(B) control point of pericycle cells as they surround the xylem						
	(C) control point of cortical cells as they h	0	-				
	(D) control point of endodermal cells as the	ney have specific trans					
00	T		Page – 189, Easy				
.02.	Layer of suberin present in root		1				
	(A) in cortical possess ability to passively	-	direction only.				
	(B) can actively transport selected ions in						
	(C) can transport ions actively in one dire	-	D				
	(D) can transport ions in multi directions	-	Page – 189, Easy				
		ation of mineral io					
103.	After the ions reach xylem, their further t		plant is through				
	(A) diffusion	(B) active transport	D 400 5				
0.4	(C) translocation	(D) All of the above					
.04.	Chief sinks for mineral elements are the f	ē -					
a -	(A) root hairs (B) fruits	(C) seeds	(D) shoot tip				
.05.	Unloading of mineral ions occurs at the fi	ne vein ending throug	h (i) and uptake by cells				
s (ii)		/···					
	(i)	(ii)					
	(A) active transport	diffusion					
	(B) diffusion	actively					
	(C) active transport	passive	D 100 -				
	(D) diffusion	passive	Page – 190, Easy				
a :		-					
.06.	Mineral ions are	-					
106.	Mineral ions are (A) rarely remobilized, from mature parts (B) rarely remobilized from young leaves						

	(C) frequently remobilized from older par	ts to young parts						
	(D) frequently remobilized from young pa	arts to older parts	Page – 190, Easy					
107.	Elements most readily mobilized		Page – 190, Easy					
	(A) phosphorous (B) potassium	(C) calcium	(D) both (A) & (B)					
08.	Most of the nitrogen travels through xyler	n as						
	(A) inorganic ions	(B) inorganic compl	lex					
	(C) organic compounds	(D) both (a) & (b)						
09.	Which of the following is correct		.					
	(A) most of the P and S are carried as orga	nic compounds						
	(B) most of P and S are carried as inorgani	ic compounds.						
	(C) Little of P and S are carried as organic	-						
	(D) Both (B) & (C)	-	Page – 190, Easy					
10.	Read the given statements		0					
	(I) Some exchange of materials occur betw	een xylem and phloe	em					
	(II) We cannot say that xylem transports o							
	Choose the correct option.	5						
	(A) I and II both are correct and II is corre	ct explanation for I						
	(B) I and II both are correct but II does not							
	(C) I is correct and II is incorrect							
	(D) I and II both are incorrect		Page – 190, Mediun					
	11.6 Phloem Transpor	t · Flow from sour	U					
11.	Which of the following statements about a							
11,	(A) Source is the part which produces foo		oneer					
	(B) Sink is the part which needs food	a, inc icui						
	(C) Leaf can never be a sink							
	(D) Roots may act as a source		Page - 190, Easy					
12.			1 age – 190, Lasy					
14,	Choose the correct option (A) Movement in phoem is hidirectionalleft & right, while movement in yulem							
	(A) Movement in phloem is bidirectionalleft & right, while movement in xylem is unidirectional upward							
		unward while move	ment in vylem is					
	(B) Movement in phloem is unidirectional upward while movement in xylem is bidirectional left & right							
	(C) Movement in phloem is bidirectional i	un & down while mo	vement in vylem is					
	unidirectional up	up & down while no	venient in xytem is					
	(D) movement in phloem is unidirectional	l unward while move	ement in vylem is					
	bidirectional up & down.	r upwara writte move	Page – 190, Easy					
13.	Phloem sap includes		1 age - 190, Lasy					
15.	(A) water, sucrose, hormones	(B) sucrose only						
		(b) sucrose only						
	(C) water and sucrose but no hormones		Page 100 East					
11	(D) sucrose and hormones but no water		Page – 190, Easy					
14.	Amino acids are transported by (A) when only	(B) phlasm and-						
	(A) xylem only (C) both xylem f phloom	(B) phloem only	or phloom					
	(C) both xylem & phloem	(D) neither xylem n						
	11 (1 TL	···· · · · · · · · · · · · · · · · · ·	Page – 190, Easy					
1 -	<u>11.6.1 The pressure flo</u>	ow or mass flow h	ypotnesis					
15.	The sugar mainly transported is		• 1 \					
	(A) Glucose (monosaccharide)	(B) Glucose (disacch	-					
	(C) Sucrose (disaccharide)	(D) Sucrose (monos						
			Page – 191, Easy					
16.	Glucose is converted to sucrose at							
	(A) the source	(B) the sink						

NEET PREVIOUS YEARS QUESTIONS

	-			
1.	Stomatal movement is not affected by :		[2018]	
	(a) Temperature (b) Light	(c) CO2 concentration	(d) O2 concentration	
2.	The water potential of pure water is:			[2017]
	(a) less than zero.	(b) more than zero but less that	n one.	
	(c) more than one.	(d) zero.		
3.	Water vapour comes out from the plant leaf throu			
	opening, carbon dioxide diffuses into the plant du	ring photosynthesis. Reason out	the above statements	
	using one of following options.			[2016]
	(a) Both processes cannot happen simultaneously		1.000 : 1.00	
	(b) Both processes can happen together because t		and CO2 is different.	
	(c) The above processes happen only during nigh			
4.	(d) One process occurs during day time, and the o		[2015]	
4.	Which one gives the most valid and recent explan (a) Potassium influx and efflux	(b) Starch hydrolysis	[2015]	
	(c) Guard cell photosynthesis	(d) Transpiration		
5.	A column of water within xylem vessels of tall tr		the because of \cdot [2015]	
5.	(a) tensile strength of water.	(b) lignification of xyl		
	(c) positive root pressure.	(d) dissolved sugars in		
6.	Root pressure develops due to:	(d) dissolved sugars in	water.	[2015]
0.	(a) low osmotic potential in soil.	(b) passive absorption.		[2010]
	(c) increase in transpiration.	(d) active absorption.		
7.	Roots play insignificant role in absorption of wat		[2015]	
	(a) <i>Pistia</i> (b) Pea (c) W			
8.	Transpiration and root pressure cause water to ris		[2015]	
	(a) pulling and pushing it, respectively.	(b) pushing it upward.		
	(c) pushing and pulling it, respectively.	(d) pushing it upward.		
9.	Xylem translocates :-		(NEET-	2019)
	(1) Water only	(2) Water and mineral	salts only	
	(3) Water, mineral salts and some organic nitroge	n only		
	(4) Water, mineral salts, some organic nitrogen and			
10.	What is the direction of movement of sugars in p		(NEET-2019)	
		wnward (4) Bi-directional		
11.	Pinus seed cannot germinate and establish withou			
	- · · · · · · · · · · · · · · · · · · ·	ate association with mycorrhizae	e.	
	(3) it has very hard seed coat.			
10	(4) its seeds contain inhibitors that prevent germi			
12.	The main difference between active and passive t	transport across cell memorane is		
	(1) Passive transport is non-selective whereas act	ive transport is selective	(NEET-2019 OD)	155A)
	(2) Passive transport requires a concentration gra		ane whereas active trans	nort
	requires energy to move solutes	dient across a biological memora	and whereas active trans	sport
	(3) Passive transport is confined to anionic carrie	r proteins whereas active transpo	ort is confined to cation	ic channel
	proteins	r proteins whereas active transpo		
	(4) Active transport occurs more rapidly than pas	sive transport		
13.	Match the following :	<u>F</u>	(NEET-2020 COV	VID)
	(a) Aquaporin (i) Amide			
	(b) Asparagine (ii) Polysaccharide			
	(c) Abscisic acid (iii) Polypeptide			
	(d) Chitin (iv) Carotenoids			
	Select the correct option :			
	(1) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)	(2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)	
	(3) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)	(4) (a)-(iii), (b)-(i), (c) -(ii), (d)		
14.	Select the incorrect statement.		(NEET-2020 COV	ID)
	(1) Transport of molecules in phloem can be bidi			
	(2) Movement of minerals in xylem is unidirection	onal.		

									V	www.allia	intacademy.com
	(4) Ele	loading of sucrose ments most easily on and potassium.						are: pho	sphorus, s	sulphur,	
15.		ocess responsible	for facilita	ating loss o	of water in	liquid for	m from	the tip o	•	ades at ni EET-202	• •
		molysis		piration 3)	Root press	sure	4) Im	bibition			
16.		List – I with List t – I	– II. List	п						[NI	EET-2021]
	(a)	Cohesion	(i)	I	nation in 1	iquid pha					
	(a) (b)	Adhesion	(i) (ii)		raction in l ttraction an			cules			
	(c)	Surface tension	· · ·		s in liquid	-		cules			
	(d)	Guttation	(iii)		n towards	•	0.000				
	, í						aces				
	Choose	e the correct answ			give below		a \				
	1)	(a) (b) (iv) (iii)		(d) (i)	2)	(a) (iii)	(b) (i)	(c) (iv)	(d) (ii)		
	1) 3)	(iv) (ii) (ii)		(i) (iii)	2) 4)	(iii)	(i) (iv)	(iv) (i)	(ii) (iii)		
17	<i>,</i>		. ,	`´ _	í í		, í				NIFET 20221
17.		c <mark>h o</mark> f the follov lovement of wa	-				-	-		alla	[NEET-2022]
		he movement d				-			of the c	ens.	
		he movement is			-		Cinorai				
		poplast is conti				-	arrier t	o water	. movem	ent	
18.		dling Experime									issue through
10.	whic		int was	perioriik	a oy più	in physi	0105150	b to rae	interry city	e plant t	[NEET-2022]
		ater is transpor	ted								
	·	ood is transport									
	1	or both water a		trongnort	tion						
		smosis is obser		uansporta							
10					alution						DIFET 20221
19.		ition of more so use its water po		a given s			watar	notonti	-1		[NEET-2022]
		ake its water po		7er0		ower its			ai tential at	t all	
	<i>5)</i> III	lake its water p			-) II			ater por		i all	

1	2	3	4	5	6	7	8	9	10
С	В	А	А	В	В	В	А	D	С
11	12	13	14	15	16	17	18	19	20
В	В	С	В	В	А	А	В	А	С
21	22	23	24	25	26	27	28	29	30
D	А	А	А	А	С	D	В	С	D
31	32	33	34	35	36	37	38	39	40
A	А	С	С	А	В	В	D	С	А
41	42	43	44	45	46	47	48	49	50
D	В	В	А	В	А	В	А	А	А
51	52	53	54	55	56	57	58	59	60
В	D	С	В	А	С	D	C	С	D
61	62	63	64	65	66	67	68	69	70
D	С	С	В	В	С	D	D	С	D
71	72	73	74	75	76	77	78	79	80
С	С	В	А	А	В	В	В	D	В
81	82	83	84	85	86	87	88	89	90
С	D	С	D	В	В	С	D	А	D
91	92	93	94	95	96	97	98	99	100
А	D	С	В	D	С	А	С	D	В
101	102	103	104	105	106	107	108	109	110
D	С	С	А	В	С	D	С	D	А
111	112	113	114	115	116	117	118	119	120
С	С	А	С	С	А	D	А	С	В
121	122	123	124						
D	В	В	А						

NCERT LINE BY LINE QUESTIONS – ANSWERS

NEET PREVIOUS YEARS QUESTIONS-ANSWERS

 1 (b)
 2 (d)
 3 (d)
 4 (a)
 5 (a)
 6 (d)
 7 (a)
 8 (a)
 9 (4)
 10 (4)

 11 (2)
 12 (2)
 13 (1)
 14 (3)
 15 (3)
 16 (4)
 17 (3)
 18 (3)
 19 (2)

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS

- **1. (b)** Light, temperature and concentration of CO₂ affect opening and closing of stomata. They are not Affected by O₂ concentration.
- **2.** (d) By convention, the water potential of pure water at standard temperature, which is not under any pressure, is taken to be zero (w = 0).
- **3. (d)** The main cause of guttation in plants is root pressure. During night, when root pressure is high sometimes due to this high pressure watery drops ooze out with the assistance of special structures which help in guttation called hydathodes.

- 4. (a) The opening and closing of stomata are caused by influx and efflux of potassium ions (K+). The Increase of K+ results in opening of stoma and decrease of K+ causes closing of stoma. The turgidity of guard cells induces the opening of the pores of stomata found on the surface of leaves.flux
- 5. (a) Due to tensile strength of water, a column of water within xylem vessels of tall trees does not break Under its weight.
- **6. (d)** Active absorption creates root pressure. In this process, the expenditure of energy takes place for the movement of substances against concentration gradient.
- 7. (a) *Pistia*, a hydrophyte plant where absorption of water by root is not important.
- **8. (a)** Transpiration creates pulling (Negative pressure) force. Root pressure creates positive pressure developed in xylem. It is measured by manometer.
- 15. Loss of water in liquid form from the tip of grass blades at night and in early morning is called guttation, it occurs due to root pressure
- 16. Cohesion Mutual attraction among molecules water Adhesion – Attraction towards surface polar Surface tension – More attraction in liquid phase Guttation – water loss in liquid phase
- 17. The movement is Aided by cytoplasmic streaming is not observed during apoplast pathway instead observed during SYMPLAST pathway
- 18. A simple experiment, called girdling, was used to identify the tissues through which food is transported
- 19. More the solutes is leaser the Ψ_s . Solutes lowers the osmotic potential and water potential