12. Thermodynamics

Physics Smart Booklet Theory + NCERT MCQs + Topic Wise Practice MCQs + NEET PYQs

Thermodynamics

Thermodynamics: It is the macroscopic description of the interaction of a system with its environment, i.e., the surroundings. By interaction we mean the transformation of heat to other forms of energy and vice versa.

A thermodynamic system: It is an assembly of extremely large number of particles (atoms or molecules) in solid, liquid, gaseous, or a combination of two or more phases.

Environment: It is anything outside a thermodynamic system that has a direct effect on the system.

Thermodynamic (or state) variables: They are the parameters used to describe the state or condition of a thermodynamic system. They are also referred to as thermodynamic coordinates. State variables are **path independent**, i.e., they depend on the initial and final states of a system, but not how the change is brought about.

Example: (i) Composition (ii) Temperature (iii) Volume (iv) Pressure (v) Internal energy (vi) Entropy

Thermodynamic process: Whenever the state of a system changes, it is said to undergo a thermodynamic process. Common thermodynamic processes are (i) isothermal, (ii) isochoric (iii) isobaric (iv) adiabatic (v) cyclic processes.

Quasi-static process is a process that occurs so slowly that the system proceeds through a series of equilibrium states during the change. It can be represented by a curve on a p-V, or a p-T, or a V-T diagram. All real processes are being regarded as quasi-static. Rapidly or violently changing process is not quasi-static.

Work: It is the energy exchanged between a system and its environment by means independent of temperature difference between them.

(P)

(a) Work done during a quasi-static process from initial state characteristised by (V_i, p_i, T_i) to a final

state (V_f, p_f, T_f) is given by
$$W = \int_{V_i}^{T} p \times dV$$

To evaluate the integral, we must know how pressure varies during the process. Area under p.V curve gives the work done, i.e., if $V_f \neq V_i$

(b) **Sign convention:** (i) Heat entering a system is considered positive, i.e., $\Delta Q > 0$, while that leaving it is negative, i.e., $\Delta Q < 0$.

Symbolic representation of sign convention

(ii) Work done by a system, i.e., work leaving a system, is considered positive, i.e., $\Delta W > 0$, while that done on the system, i.e., work entering the system, is negative i.e., $\Delta W < 0$.

(c) **Dependence of work and heat on the process:** p-V diagram shows three processes a, b and c between states i and f of a system. It is obvious from the diagram that $Q_a \neq Q_b \neq Q_c$ and $W_a > W_b > W_c$

so, heat added and work done are path dependent.

(d) Work done during various processes:

- (i) Isochoric process (constant volume process): No work is done since there is no change in volume.
 - $W_v = 0$ since $\Delta V = 0$
- (ii) Isobaric process (constant pressure process): $W_p = nR[T_f T_i]$
- $n \rightarrow$ number of moles of an ideal gas
- $T_i \rightarrow \text{temperature of the initial state (i)}$
- $T_f \rightarrow temperature of the final state (f)$

(iii) Isothermal process (constant temperature process):

$$W_{T} = nRT \ln\left(\frac{V_{f}}{V_{i}}\right) = nRT \ln\left(\frac{p_{i}}{p_{i}}\right)$$

 $V_i, \frac{V_f}{\to}$ initial and final volumes of a system

 $p_i, p_f \rightarrow initial$ and final pressure of the system at temp. T

$$W_T > 0$$
 if $V_f > V_f$

 $W_T < 0$ if $V_i > V_f$

(iv) Adiabatic process:

$$W_{A} = \frac{1}{1 - \gamma} [p_{f} V_{f} - p_{i} V_{i}] = \frac{nR(T_{f} - T_{i})}{1 - \gamma}$$

 $W_A < 0$ if $V_f < V_i$ (sudden compression)

 $W_A > 0$ if $V_f > V_i$ (sudden expansion)

The first law of thermodynamics

Experiments show that the quantity (Q - W) is a constant for all processes for the given states. The quantity (Q - W) must represent some intrinsic property of the system, called its internal energy. This experimental fact leads to the first law of thermodynamics.

The first law of thermodynamics states that the net energy transferred equals the change in the internal energy of a system undergoing a process.

 $\Delta E_{int} = E_{f_{int}} - E_{f_{int}} = Q - W$

S

where i indicates for initial state and f final state of the system. When the energy transfers are small, $\Delta E_{int} = \Delta Q - \Delta W$

- The first law of thermodynamics is an extension of the principle of conservation energy to systems that are not isolated. In such cases, energy may be transferred into or out of the system as either work or heat.
- **Internal energy** is the sum of the molecular kinetic energy, molecular potential energy and other kinds of molecular energy viewed from a reference frame at rest with respect to the system.
- Internal energy is associated with the random translational, rotational and vibrational motion

a \rightarrow isochoric b \rightarrow isobaric c \rightarrow isothermal d \rightarrow adiabatic

(D)	 A free expansion is essentially an adiabatic process. A free expansion cannot be described by an indicator diagram because the gas is not in thermal equilibrium during the process. Initial and final states of a freely expanding gas can be shown on the indicator diagram once it attains thermal equilibrium. 						
(h) Li i	nitation of the first law						
	(i) It does not indicate the direction in which the exchange of heat and work can take place.						
	(ii) It imposes no restriction on the extent of transfer of mechanical work to heat. However, there is a limit in the						
	reverse process although first law is not violated.						
	(iii) It does not indicate on whether the source is at a higher temperature or at a lower temperature.						
	A law that decides whether a process allowed by the first law actually takes place is called the						
	2 nd law of thermodynamics.						
Phase diagram: Any two phases of a substance coexist in thermal equilibrium for a set of values of pressure p and							
	temperature T. If this set of values is represented on a pT diagram, a curve is obtained for each pair of phases, called						
	phase diagram. p Curve of Fusion A' B Curve of Curve of Curve of vaporisation Vapour C Curve of Vapour Curve of Curve of C						
	(i) The curve along QA or QA' is called the fusion curve and along this curve both solid and liquid phases						
	coexist in thermal equilibrium. QA is for ice-type substances for which the melting point decreases with pressure and						
	QA' is for wax-type substances for which the melting point increases with temperature.						
	(ii) The curve along QB is called the vaporization curve and along this curve both liquid and vapour phases						
	coexist in thermal equilibrium.						
	(iii) The curve along OC, called the sublimation curve and along this curve both solid and vapour phases may coexist						

in thermal equilibrium.

(iv) Point Q, called the triple point, is a unique point for a substance at which point all the three phases i.e., solid, liquid and vapour phases coexists in thermal equilibrium.

Reversible process

It is a process that is quasi-static and non-dissipative. Otherwise, the process is irreversible. Irreversibility is a rule of nature rather than exception.

7

www.alliantacademy.com

Heat engine

It is device that transforms heat to work while operating in a cycle.

(a) Essential parts of a heat engine:

(i) **Heat source:** It is a reservoir that supplies heat at some high temperature T_1K (infinite thermal capacity).

(ii) Heat sink: It is reservoir that absorbs heat at some lower temperature T_2K

(infinite thermal capacity) $< T_1 K$.

(iii) Working substance: It is a thermodynamic system that goes through a cycle consisting of several processes.

(b) Efficiency (η): It is the ratio of the work done by working substance to the heat transferred to it in every cycle.

 $\eta = \frac{W}{Q_1} \left(\frac{Q_1 - Q_2}{Q_1} \right) = \left(\frac{T_1 - T_2}{T_1} \right)$

 $Q_1 \rightarrow$ heat transferred at T_1K , $Q_2 \rightarrow$ heat rejected to the sink at T_2K

Carnot (pronounced as carno) engine

It is an ideal reversible engine conceived by Sadi Carnot. Ideal gas is its working substance. Carnot cycle, a set of operations the working substance goes through, consists of two isothermals and two adiabatics. It has the following four steps:

(i) Step - 1: Isothermal expansion (curve ab) at T₁K (in contact with the heat source), absorbing heat Q₁.

- (ii) Step 2: Adiabatic expansion (curve bc), in contact with an insulating stand until the temperature falls to T₂K.
- (iii) Step 3: Isothermal compression (curve cd) at T_2K (in contact with the sink) rejecting heat Q_2 .
- (iv) Step 4: Adiabatic compression (curve da) in contact with an insulating stand, until the temperature rise to T_1K . Its efficiency is $\eta = 1 \frac{T_2}{T_1}$

• $\eta = 1$ if either $T_2 = 0$ or $T_1 = \infty$. Either condition is unattainable. Thus, $\eta \neq 100\%$, even for a carnot engine.

• $\eta = 0$ if $T_2 = T_1$. A carnot engine cannot work without a sink.

 $Q_2 = 0$ only if $T_2 = 0$. This is the lowest attainable temperature, called the absolute zero.

 η does not depend on the nature of the working substance.

• Work done per cycle by a carnot engine is equal to the area of the loop of the carnot cycle.

Refrigerator

It is a device that transfers heat from a cold place to a warm place. It is also called heat pump. Heat transferred to the source is given by $Q_1 = (Q_2 + W)$

where W \rightarrow work done on the working substance in transferring Q₂ from the sink to the source. Its performance is described by $K = \frac{Q_2}{W} = \left(\frac{Q_2}{Q_1 - Q_2}\right)$

Source at T1K

	• A carnot engine operated backward is a carnot refrigerator for which $K = \left(\frac{T_2}{T_1 - T_2}\right)$ • A refrigerator is perfect refrigerator if no work is done in transferring heat from the sink to the source
	For a perfect refrigerator $W = 0$ and $K = \infty$
	• For household refrigerator, $K = 55$ (typical)
~æ	• A heat pump is used for cooling a space in summer by placing its condenser outside the space to be
	cooled (room) and for heating a space in winter by placing its condenser inside the room.
	• Freon gas is the working substance in a refrigerator.
	• Performance of refrigerator is more if $(T_1 - T_2)$ is less. When a refrigerator is defrosted, T_2 decreases
	increasing K. Thus, defrosting is necessary for better performance of refrigerator.
Seco	and law of thermodynamics
(a) Sin	plest form: Heat by itself cannot flow from a cold body to a bot body
	bin Blonch statement
(b) Ke	win-Planck statement
	(i) There exists no cycle that extracts heat from a single source at a single temperature and completely convert it to
	work.
	ii) Shorter version of Kelvin-Planck statement - there are no perfect engines.
(c) Cla	usius statement
	i) No process is possible whose sole net result is the transfer of heat from a lower to a higher temperature.
	ii) Shorter version of Claussius statement - There are no perfect refrigerator.
Entro	v: It is defined as a state variable whose change is the ratio of heat (dO) transferred reversibly to the temperature T
	at which it is transferred.
	$dS = \frac{dQ}{T}$
:	S.I. unit of entropy is J K ⁻¹ . Its dimensional formula is $[M^1L^2T^{-2} K^{-1}]$
]	Entropy and the second law of thermodynamics: In any thermodynamic process that proceeds from one
(equilibrium state to another, the entropy of the system + environment either remains unchanged or increases.
111	
liius	
1. Th	e graph of pressure versus volume of a monoatomic ideal gas is as shown. What is the internal energy of the system n state 1 and the heat given to the system during the process 4 to 1?
	Pressure (Pa)

(A)
$$15, -5$$

(B) $3, -20$
(C) $7, 9$
(D) $7, -10$
 $6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ (m^3)$

Ans (B)

$$U = \frac{3}{2} pV \qquad \qquad \therefore U_1 = \frac{3}{2} (2 \times 1) = 3 \text{ J}$$

Similarly $U_2 = 22.5 \text{ J}$, $U_3 = 37.5 \text{ J}$ and $U_4 = 15 \text{ J}$

Work done during a process is given by area under p-V curve.

 $W_{12} = \frac{1}{2}(2+5)(3-1) = 7$ J, $W_{23} = 5(5-3) = 10$ J, $W_{34} = 0$ and $W_{41} = -2(5-1) = -8$ J $Q_{41} = (\Delta U)_{41} + W_{41} = [3 - 15] + [-8] = -20 \text{ J}$ 2. Figure shows the graph of pressure versus volume of an ideal gas, taken from state 1 to 3 via three different paths i.e., 123, 13 and 143. The internal energies of the gas corresponding to the states 1 and 3 are P_0V_0 and $5P_0V_0$ respectively. The works done in the processes $4 \rightarrow 3$ and $1 \rightarrow 2$ respectively are Pressure (P) (A) $p_0V_0, 2p_0V_0$ $2P_0$ **(B)** $2p_0V_0, p_0V_0$ (C) p_0V_0, p_0V_0 (D) $2p_0V_0, 2p_0V_0$ Volume V_{α} $2V_{\rm o}$ (\mathcal{V}) Ans (A) $W_{4\to3}$: Area under 43 curve = $p_0(2V_0 - V_0) = p_0V_0$ $W_{1\rightarrow 2}$: Area under 12 curve = $2p_0(2V_0 - V_0) = 2p_0V_0$ 3. An ideal gas goes from state 1 to state 2, as shown in the figure. The work done by the gas during the process is (A) positive (B) negative (C) zero (D) independent of the pressure \cap Ans (A) Since the volume is increasing, the work done is positive For nitrogen, $C_p - C_v = x$ and for argon, $C_p - C_v = y$. The relation between x and y is 4. (B) y = 7xx = 7y(C) x = (y/2)(A) (D) x = yAns (D) 5. A sample of gas expands from volume V_1 to V_2 . The amount of work done by the gas is maximum when the expansion is (A) isothermal (B) adiabatic (C) isochoric (D) same in all the cases Ans (A) Since in an isothermal process $\Delta U = 0$, Q = W and W is maximum. 6. In an isothermal expansion of a gas (A) pressure remains constant (B) temperature remains constant (D) $pV^2 = constant$ (C) density remains constant Ans (B) 7. The ratio of specific heats of a gas at constant pressure to that at constant volume is γ . The change in the internal energy of one mole of a gas, when volume changes from V to 2V at constant pressure p is (C) $\frac{pV}{\gamma - 1}$ (D) $\frac{\gamma pV}{\gamma - 1}$ (A) (B) pV Ans (C) $\Delta U = nC_{v}\Delta t = \frac{nR}{\gamma - 1}\Delta t = \frac{p\Delta V}{\gamma - 1} = \frac{pV}{\gamma - 1} \qquad (\because \Delta V = 2V - V)$ 8. In the figure given below, the work done in the process (A) increase with time А V

(B) decreases with time (C) remains constant with time (D) is independent of volume Ans (A) As seen from the graph, the area under the curve increases with time. Thus the work done also increases with time. 9. The change in internal energy for any process between two given temperatures is (A) the same (B) different (C) dependent on path (D) independent of C_p of the gas Ans (A) ΔU is path independent and is given $\Delta U = nC_v \Delta T$ 10. Find the amount of work done to increase the temperature of one mole of an ideal gas by 30 °C, if it is expanding under the condition, $V \propto T^{\frac{2}{3}}$ (R = 1.99 cal mol⁻¹ K⁻¹) Solution Given $VT^{\overline{3}}$ = constant ... (1) We have $pV = \mu RT \Rightarrow T = \frac{pV}{\mu R}$ Substituting in (1), $p^{-\frac{2}{3}}$, $V^{\frac{1}{3}}$ = constant (or) $pV^{-\frac{1}{2}}$ = constant Which is of the form $pV^n = constant$ Work done in a polytropic process W = $\frac{p_2V_2 - p_1V_1}{n-1} = \frac{\mu R\Delta T}{n-1} = \frac{1 \times 1.99 \times 30}{-\frac{1}{2} - 1} = 39.8$ cal Calculate the work done when 1 mole of a perfect gas is compressed adiabatically. The initial pressure and volume 11. of the gas are 10^5 Nm⁻² and 6 litres respectively. The final volume is 2 litres. Molar specific heat of the gas at constant volume is $\frac{5R}{2}$. Using $p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$ We get, $p_2 = 10^5 \left(\frac{6}{2}\right)^{\frac{7}{5}} = 10^5 \left(3^{7/5}\right)^{\frac{7}{5}}$ **Solution:** $\therefore W = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1} = \frac{10^5 \times 6 \times 10^{-3} - 10^5 \times 3^{\frac{7}{5}} \times 2 \times 10^{-3}}{\frac{7}{5} - 1} = -827 \cdot 7 J$ 12. A perfect gas goes from state A to state B by absorbing 8×10^5 J of heat and doing 6.5×10^5 J of external work. In another process, when it is transferred between the same two states, it absorbs 10^5 J of heat. In the second process (A) work done by the gas is 10^5 J (B) work done on the gas is 10^5 J (C) work done by the gas is 0.5×10^5 J (D) work done on the gas is 0.5×10^5 J Ans (D) In the first process $dU = dQ - dW = 8 \times 10^5 - 6.5 \times 10^5 = 1.5 \times 10^5 \text{ J}$ dU is the same for the first and the second process, since the initial and final states are the same.

Hence for the second process. $dW = dQ - dU = 1 \times 10^5 - 1.5 \times 10^5 = -0.5 \times 10^5 \text{ J}.$

The negative sign indicates that work is done on the gas.

13. An ideal gas is taken from state A to state B via three different processes as shown in p 4 the figure. If Q₁, Q₂, Q₃ denote the heat absorbed in the three different processes, then (B) $Q_1 > Q_2 > Q_3$ (A) $Q_1 < Q_2 < Q_3$ (**D**) $Q_2 = \frac{Q_1 + Q_2}{2}$ (C) $O_1 = O_2 = O_3$ Ans (A) From dU = (dQ - dW); dQ = (dU + dW); dU is the same for all the three processes. The area under the curves represent the work done in that process. Smaller the work done smaller is the heat absorbed. Hence, $Q_1 < Q_2 < Q_3$. 40 calories of heat is needed to raise the temperature of one mole of an ideal monoatomic gas from 20 °C to 30 °C at 14. constant pressure. The amount of heat required to raise the temperature over the same interval of temperature at constant volume is (Given R = 2 cal mol⁻¹ K⁻¹) (A) 40 cal (B) 20 cal (C) 30 cal (D) 10 cal Ans (B) $dQ = nC_P\Delta T \Longrightarrow 40 = 1 \times C_P \times 10 \Longrightarrow C_P = 4 \text{ cal mol}^{-1} \text{ K}^{-1}$ $C_P - C_V = R \Rightarrow C_V = C_P - R = 4 - 2 = 2 \text{ cal mol}^{-1} \text{ K}^{-1}$ $dO = nC_V \Delta T = 1 \times 2 \times 10 = 20$ cal A carnot's engine works between a source at temperature T_1 and sink at temperature T_2 . To increase the efficiency 15. of the engine (A) both T_1 and T_2 should be decreased (B) both T_1 and T_2 should be increased (C) T_1 should be increased but T_2 should be decreased (D) T_1 should be decreased but T_2 should be increased Ans (C) The efficiency of the Carnot's engine is given by $\eta = 1 - \frac{T_2}{T}$ To increase η , $\frac{T_2}{T}$ should be decreased. This can be done by increasing T_1 and decreasing T_2 . 16. A heat engine operates on Carnot cycle between 227 °C and 27 °C. If it absorbs 15×10^4 J of heat energy, then amount of heat converted into work is (C) 7×10^4 J (A) 5×10^4 J (B) 6×10^4 J (D) $8 \times 10^4 \, \text{J}$ Ans (B) Efficiency of the Carnot's engine, $\eta = \left(1 - \frac{T_2}{T_1}\right) = \left[1 - \left(\frac{27 + 273}{227 + 273}\right)\right] = 1 - \frac{300}{500} = 1 - 0.6 = 0.4$ Also $\eta = \frac{\text{Work done}}{\text{heat absorbed}}$ \therefore work done = $\eta \times$ heat absorbed = $0.4(15 \times 10^4) = 6 \times 10^4$ J 17. A refrigerator with power on and door open is kept in a closed room. The temperature of the room (A) increases (B) decreases (C) remains the same (D) may increase or decrease. Ans (A)

The total heat delivered to the room and the work done on the system is more than the total heat withdrawn from the room. Thus the temperature in the room increases. 18. A scientist says that the efficiency of his heat engine which works at source temperature 127 °C and sink temperature 27 °C is 26 %, then (A) it is impossible (B) it is possible but less probable (C) it is quite probable (D) data is incomplete Ans (A) 19. Two identical Carnot engines A and B operate between the temperatures T_1 and T_2 with $T_1 > T_2$. Suppose the source temperature of A is increased by θ , while the sink temperature of B is decreased by θ , then (A) the efficiency of A increases (B) the efficiency of A decreases (C) the efficiency of B increases (D) none of these Ans (B) and (C) $\eta = \left(\frac{T_1 - T_2}{T_1}\right)$ $\eta_A = \frac{(T_1 + \theta) - T_2}{T_1 + \theta}$ and $\eta_B = \frac{T_1 - (T_2 - \theta)}{T_1}$ Clearly $\eta_{\rm B} > \eta$ and $\eta_{\rm A} < \eta$ A Carnot's engine has an efficiency of $\frac{1}{3}$. The amount of work this engine can perform by heat input per kilocalorie 20. is (B) 700 cal (C) 700 J (A) 1400 cal Ans (D) $\eta = \frac{W}{Q}$: $W = \frac{1}{3} \times 10^3 \text{ cal} = \frac{1}{3} \times 4 \cdot 2 \times 10^3 \text{ J} = 1400 \text{ J}.$ 21. Entropy of a thermodynamic system does not change when this system is used for (A) conduction of heat from higher to lower temperature (B) conversion of heat in to work isobarically (C) conversion of heat in to internal energy isochorically (D) conversion of work in to heat ischorically. Ans (D)

NCERT LINE BY LINE QUESTIONS

1.	1 gm of water is changed from its liquid to vapour phase. The measured latent heat of						
	water is 2256 J/g.	. What is the amoun	nt of change in internal	energy? [NCERT Pg. 308]			
	(1) 169.2 J	(2) 3068.2 J	(3) 2086.8 J	(4) 2548.3 J			
2.	A monoatomic id	leal gas undergoes	an adiabatic process fro	om temperature 300 K to 600 K. The			
	gas has 2 moles, c	calculate work done	e by this ideal gas. [NCI	ERT Pg. 312]			
	(1) 600 R(J)	(2) -200 R(J)	(3)-450R(J)	(4) -900 R (J)			
3.	A reversible cycli	c heat engine absor	rbs 900 joule of heat from	m source. If 400 J of heat is released			
	to the sink, what	is the efficiency of	the engine?	[NCERT Pg. 314]			
	(1) ²		(2) 5	4			
	$(1){9}$	$(2) - \frac{1}{7}$	(3) - 9	$(4) - \frac{1}{9}$			
4.	In an isothermal	process, two mol	es of an ideal gas expa	ands from volume 2 m^3 to 8 m^3 at			
	temperature of 22	27°C. Heat absorbed	d by the gas during pro	cess is nearly			
	1		, , , , , , , , , , , , , , , , , , , ,	[NCERT Pg. 311]			
	(1) 27 <mark>52</mark> cal	(2) 3250 cal	(3) 1945 cal	(4) 1875 cal			
5	In a refrigerator, t	the system extracts	heat of 600 I from a cold	reservoir and released 900 I of heat			
0.	to hot reservoir. T	The coefficient of pe	erformance of a refriger	ator is given by			
			enformance of a reingen	INCERT Pg 314]			
	(1)2	(2)3	(3) 6	(A) 9			
6	(1)2 What amount of 1	(2)	$(0)^{0}$	(T))			
0.	to main an its to man	neat must be suppr	ieu to 210 - Kg of fillioge	$a_{1} = 100111 \text{ temperature}$			
	to raise its temper	rature, by 25 C at c	onstant pressure? (Mole	Equal wt. of $N_2 = 20$			
				[NCERT Pg. 321]			
	(1) 270.5 J	(2) 519.6 J	(3) 370.4 J	(4) 148.3 J			
7.	In changing the state of a gas adiabatically from an equilibrium state A to another equilibrium						
	stat <mark>e S</mark> , an amoun	t of work equal to	104.6 J is done on the sy	stem. If this gas			
	is taken from stat	e A to B via a proce	ess in which the net heat	t absorbed by the system			
	is 35 c <mark>al, h</mark> ow mu	ch is net work don	e by the system in later	case? $(1 \text{ cal} = 4.19 \text{ J})$			
			[NCERT Pg.321]				
	(1) 192.7 J	(2) 89.6 J	(3) 42.05 J	(4) 142.5 J			
8.	A cylinder with n	novable piston con	tains 2 moles of hydroge	en at standard temperature			
	and pressure. The	e cylinder walls of t	the cylinder are made of	f heat insulator. By what			
	factor does the pr	essure of a gas inci	rease when gas is sudde	nly compressed to half of			
	its Original volum	ne?		[NCERT Pg. 321]			
	(1) 1.5	(2) 3.82	(3) 2.64	(4) 6.23			
9.	Two cylinders A	and \tilde{B} of equal capa	acity are connected to ea	ach other via a stopcock. A			
	contains a gas at s	standard temperatu	are and pressure. <i>B</i> is co	mpletely evacuated. The			
	entire system is th	hermally insulated.	The stopcock is sudder	nly opened. What is effect			
	on internal energy	v of gas?		[NCERT Pg 321]			
	(1) Increases	y of 840.	(2) Decreases				
	(3) No change		(4) May decrease	or no change			
10	A thermodynami	ic system is taken	from original state to a	nother intermediate state by linear			
10.	process shown in	diagram Its volu	me is then reduced to a	original volume from B to C by an			
	isobaric process.	What is total work	done by gas from A to 6	to C?			
	process.						
				13			

	PÎ 3 B
	$\overline{\mathbf{v}}$
	(1) $Q_1 > Q_2 > Q_3$ and $\Delta U_1 = \Delta U_2 = \Delta U_3$
	(2) $O_2 > O_2 > O_1$ and $\Delta U_1 = \Delta U_2 = \Delta U_2$
	(3) $\Omega_1 = \Omega_2 = \Omega_1$ and $\Delta U_1 > \Delta U_2 > \Delta U_1$
	(4) $O \ge O \ge O$ and $AU \ge AU \ge AU$
17	(4) $Q_3 > Q_2 > Q_1$ and $\Delta O_1 > \Delta O_2 > \Delta O_3$
17.	If Q, E and W denote respectively the heat added, change in internal energy and work
	(1) O = 0 (2) O W O (2) W O (4) E = 0 (4) E = 0 (
10	$ \begin{array}{c} (1) \bigcirc -0 \\ (2) \bigcirc = w = 0 \\ (3) & w = 0 \\ (4) E = 0 \\ (5) & w = 0 \\ (5)$
10.	(1) Extensive only (2) Intensive only
	(1) Extensive only (2) Intensive only (3) Both (1) and (2) (4) Neither (1) por (2)
10	An ideal gas is compressed to half of its initial volume by means of different thermodynamic
17.	processes. Which of the process result in the maximum work done on
	the gas?
	(1) Isothermal (2) Adiabatic
	(3) Isobaric (4) Isochoric
20.	Refrigerator is to maintain eatables kept inside at 7°C. If the room temperature is 43°C, coefficient
	of performance of refrigerator must be [NCERT Pg. 322]
	(1) 7.78 (2) 13.7 (3) 9.72 (4) 0.75
	NCERT BASED PRACTICE QUESTIONS
1	The concept of temperature comes from:-
	(a) zeroth law of thermodynamics (b) 1 st law of thermodynamics
	(c) 2 nd law of thermodynamics (d) none of these
2.	In thermodynamics which is a state variable
	(a) work (b) heat (d) all of these
3	(c) internal energy (d) all of these Which law of thermodynamics is simply the general law of energy conservation?
9.	(a) zeroth law (b) 1 st law
	(c) 2 nd law (d) none of these
4.	If w is the work done by the gas in an isothermal expansion
	(a) $w > 0$ (b) $w < 0$
	(c) $w = 0$ (d) none of these
5	If w is the work done on the gas in an isothermal compression
5.	(a) $w > 0$ (b) $w < 0$ (c) $w = 0$ (d) none of these
6.	For an ideal gas, internal energy depends on
	(a) temperature (b) temperature and pressure
	15

	(c) pressure and	volume	(d) all of	these
7.	If an ideal gas go	es from (P_1, V_1, V_1)	T_{1}) to $(P_{2'}V_{2_{i}}T_{2'})$ as	liabatically and work done by the gas is
	positive (w >0) th	nen		
	(a) $T_1 = T_2$	(b) $T_1 > T_2$	(c) $T_1 < T_2$	(d) none of these
8.	If an ideal gas go	es from (P_1, V_1, V_1)	T_{1}) to $(P_{2'}V_{2}, T_{2'})$ as	liabatically and work done by the gas is
	negative (w < 0)	then		
	(a) $T_1 = T_2$	(b) $T_1 > T_2$	(c) $T_1 < T_2$	(d) none of these
9.	For a cyclic proce	255		
	(a) $\Delta Q = 0$		(b) ΔT =	= 0
	(c) $\Delta U = 0$		(d) all of	these
10.	For a cyclic proce	255		
	(a) $\Delta Q = W$		(b) $\Delta T =$	= 0
	(c) $\Delta U = 0$		(d) <mark>all o</mark> f	these
11.	Which law of the	rmodynamics	restricts the efficient	ency of heat engine not to be1
	(a) ze <mark>roth</mark> law		(b) first	aw
10	(c) second law		(d) none	of these
12	A geyser neats w	ater flowing a	t the rate of 3.0 lit	es per minute from 27 °C to 77 °C. If the
	combustion is 4 () $10^4 \text{ J}/\sigma^2$, what is the fate	or consumption of the fuel is its fleat of
	$(a) 16 \text{ gm min}^{-1}$, 10 J/ g.	(b) 16 gr	n cm
	(c) 16 mg		(d) Non	
13	What amount of	heat must be s	upplied to $2.0 \times 10^{\circ}$) ⁻² kg of nitrogen (at room temperature) to
	r <mark>ais</mark> e its temperat	ture by 45°C at	constant pressure	
	(<mark>Mo</mark> lecular mass	of $N_2 = 28; R =$	= 8.3 J mol ⁻¹ K ⁻¹ .)	
	(a <mark>) 93</mark> 0 J		(b) 934 J	
	(c) <mark>934</mark> erg		(d) None	e
14	In a reversible is	ochoric change		
	(a) $\Delta w = 0$		(b) $\Delta r =$	= 0
	(c) $\Delta T = 0$		(d) $\Delta V=$	=0
15	A process in whi	ch the volume	remaining consta	nt is called
	(a) Isobaric		(b) Isoch	loric
16	(c) Isothermal	tolivore 5 1108	(a) Non	ite and services 3 61091 of heat per minute
10	from its boiler W	$\sqrt{10^{\circ}}$	iency of the engin	e?
	(a) 15%	filde 15 the effic	(b) 15.7%	
	(c) 16%		(d) Non	2
17	An electric heate	r supplies heat	to a system at a r	ate of 100W. If system performs work at a
	rate of 75 joules p	per second. At	what rate is the in	nternal energy increasing ?
	(a) 24 J		(b) 25 W	
	(c) 25 J		(d) None	
18	A thermodynam	ic system is tak	ken from an origir	al state D to an intermediate state E by the
	linear process sh	own in Fig. Its	volume is then re	duced to the original value from E to F by an
	isobaric process.	Calculate the t	otal work done by	the gas from D to E to F.
				16

(4) Sum of temperatures of A and D. 28. Which of the following statements is correct for any thermodynamic system (1) internal energy changes in all processes. (2) internal energy and entropy are state functions. (3) change in entropy can never be zero. (4) work done in an adiabatic process is always zero. 29. Which of the following statement is incorrect. (1) All reversible cycles have same efficiency. (2) Reversible cycle has more efficiency than an irreversible one. (3) Carnot cycle is a reversible one. (4) Carnot cycle has the maximum efficiency in all cycles. 30. The coefficient of performance (b) of a heat pump is given by $(2)\frac{W}{Q_2} \qquad (3)\frac{Q_1}{W}$ (1) $\frac{Q_2}{W}$ Molar specific heat capacity of substance does not depend on-31. (1) Nature of the substance (2) Temperature of the substance (3) Amount of the substance (4) Condition under which heat is supplied 32. Which of the following is meaningful statement (1) A gas in a given state has a certain amount of heat (2) A gas in a given state has a certain amount of work (3) A gas in a given state has a certain amount of internal energy (4) all statements are meaningless 33. One calorie is defined to be the amount of heat required to raise the temperature of 1g of water from at 1 atm. (2) 10°C to 11°C (1) 0° C to 1° C (3) 4°C to 5°C (4) 14.5°C to 15.5°C 34. Which of the following statement is not correct-(1) The efficiency of the carnot heat engine depends only on the temperatures of the source and sink between which the engine works. (2) The efficiency of a heat engine can never be unity. (3) For a refrigerator, the co-efficient of performance can never be infinite (4) None of these 35. The pressure P and volume V of an ideal gas both increase in a process-(i) Such a process is not possible (ii) The work done by the system is positive (iii)The temperature of the system must increase. (iv)Heat supplied to the gas is equal to the change in internal energy (1) (i), (ii) (2) (ii), (iii) (3) (iii), (iv) (4) (i), (iv) 36. Which of the following statement is correct-(1) Extensive variables are internal energy (U), Volume (V) and Pressure (P). (2) Intensive variables are pressure (P), Temperature (T) and total mass (M) (3) Extensive variables are volume (V), total mass (M) and internal energy (U) (4) Intensive variables are temperature, density(P) and volume (V) 37. In case of water from 0°C to 4°C (i) Volume decreases and density of water is maximum at 4°C (ii) DW will be negative, since volume decreases $(iii)C_p > C_v$

$(iv)C_p < C_v$

(1) (i), (ii) (2) (ii), (iii) (3) (iii), (iv) (4) (i), (ii) & (iv)

- 38. Which of the following statement is correct.
 - (1) If heat is added to a system, its temperature must increase.
 - (2) If positive work is done by a system in a thermodynamic process, its volume must increase.(3) In free expansion, heat is necessarly absorbed by the system.
 - (4) In a process, the initial pressure and volume are equal to the final pressure and volume
 - then the net work done by the system in the process must be zero.
- **39.** A cycle followed by an engine [made of one mole of perfect gas (g=5/3) in a cylinder with a piston is shown in figure.

A to B : Volume constant

- B to C : Adiabatic
- C to D : Volume constant

D to A : Adiabatic and
$$V_c = V_p = 2V_A = 2V_p$$

which of the following statement is wrong -

- (1) In AB part of the cycle heat is supplied to the engine from outside
- (2) In CD part of the cycle heat is being given to the surrounding by the engine
- (3) In DA part of the cycle internal energy of the system increases
- (4) In BC part of the cycle internal energy of the system increases
- 40. Heat is added to an ideal gas and the gas expands. In such a process the temperature-
 - (1) must increase (2) will remain same
 - (3) must decrease (4) can not say
- 41. Under isobaric condition if the temperature of a room increases then-
 - (1) Total KE of the molecules increases.
 - (2) The KE of the molecules decreases.
 - (3) Total KE of the molecules remain same.
 - (4) The density of air increases.

42. An ideal gas contained in a cylinder by a frictionless piston is allowed to expand such that temperature remains constant then work done by the gas-

- (1) Zero
- (2) Positive
- (3) Negative
- (4) May increase or decrease
- 43. During the melting of a slab of ice at 273K at atomospheric pressure-
 - (1) Work done by ice plus water system on atmosphere is positive
 - (2) Work done on ice plus water system by atmosphere is positive
 - (3) Internal energy of ice plus water system increases
 - (4) Both (2) and (3)
- 44. For a given process on an ideal gas dW = 0 & dQ < 0 then for the gas-(1) Temp will decrease
 - (2) Vol. will increase

- (3) pressure will remain constant
- (4) Temp will increase
- 45. An ideal gas changes in states from 1 to 2 through three different processes A, B, C as shown

Then work done during the processes are $W_A W_B \& W_C$. Choose the correct option.

(1)
$$W_{A} = W_{B} = W_{C}$$
 (2) $W_{A} > W_{B} > W_{C}$

(3)
$$W_A = W_C > W_B$$
 (4) $W_C > W_A > W_B$

- A glass of water is stirred and then allowed to stand until the water stops moving. Then **46**. internal energy of water -
 - (3) will decrease (4) nothing can be said
- (1) remains constant (2) will increase 47. If an ideal gas is compressed suddenly then-
 - (2) It's temperature will decrease
 - (1) It's temperature will increase (4) None of the above (3) Temperature remains constant
- **48**. If a float heat engine on the ocean extract heat from water and convert into mechanical work. Is it possible?
 - (1) Yes, from 1st law of thermodynamic
 - (2) No, from 1st law of thermodynamic
 - (3) Yes, from 2nd law of thermodynamic
 - (4) Yes, from both 1st and 2nd law of thermodynamic
- 49. For a spontaneous process of the system, where S is entropy.
 - (2) DS = 0(1) DS > 0(3) DS < 0 (4) None of the above
- A piston is slowly pushed into a metal cylinder isothermally containing an ideal gas then 50. incorrect statement is-
 - (1) Pressure of the gas increases.
 - (2) Average speed of the gas molecules increases.
 - (3) The number of molecules per unit volume increases
 - (4) None of these

TOPIC WISE PRACTICE QUESTIONS

TOPIC 1: Zeroth Law and First Law of Thermodynamics

- 1. The first law of thermodynamics expresses
 - 1) law of conservation of momentum
 - 3) law of conservation of mass

- 2) law of conservation of energy
- 4) All of the above
- 2. Which of the following parameters does not characterize the thermodynamic state of matter? 1) Temperature 2) Pressure 3) Work 4) Volume

3.	The internal energy	of an ideal gas	does not dep	pend upon		
	1) temperature of the	e gas	2)	pressure of	the gas	
	3) atomicity of the g	as	4)	number of n	noles of the gas.	
4.	The internal energy of	change in a sys	stem that has	absorbed 2	Kcal of heat and done 500 J of wo	ork is
	1) 8900 J	2) 6400 J	3)	5400 J	4) 7900 J	
5.	110 joules of heat is	added to a gase	eous system,	whose inter	nal energy is 40J; then the amount	of external
	work done is					
	1) 150 J	2) 70 J	3)	110 J	4) 40 J	
6.	In a given process or	n an ideal gas,	dW = 0 and d	dQ < 0. Then	n for the gas	
	1) the temperature w	ill decrease	2)	the volume	will increase	
	3) the pressure will r	emain constan	nt 4)	the temperat	ture will increase	
7.	At a given temperatu	are the internal	energy of a	substance		
	1) in liquid state is e	qual to that in	gaseous state	e 2) in lie	quid state is less than that in gaseo	us state
	3) in liquid state is m	nore than that i	in gaseous sta	ate 4) is eq	ual for the three states of matter	
8.	If the amount of hea	t given to a sy	stem is 35 J	and the amo	ount of work done on the system is	s 15 J, then
	the change in interna	al energy of the	e system is			
	1) – <mark>50</mark> J	2) 20 J	3)	30 J	4) 50 J	
9.	Which of the followi	ing is incorrect	t regarding fi	rs <mark>t law o</mark> f th	ermodynamics?	
	1) It is a restatement	of principle of	f conservatio	n of energy.		
	2) It is applicable to	cyclic process	es			
	3) It introduces the c	concept of entro	ору			
	4) It introduces the c	concept of inter	rnal energy			
10.	If a system undergoe	es contraction of	of volume the	en the work	done by the system will be	
	1) zero 2) neg	gative	3) positive		4) negligible	
11.	A system X is neithe	r in thermal eq	luilibrium wi	th Y nor wit	h Z. The systems Y and Z	
	1) must be in therma	l equilibrium	2)	cannot be in	thermal equilibrium	
	3) may be in thermal		4)	None of the	se	
	TOPIC 2: S	Specific He	eat Capa	city, The	ermodynamic Processes	
12.	In the equation $\mathbf{P}\mathbf{V}^{\gamma}$	= constant, the	e value of γ is	is unity. The	en the process is	
	1) isothermal	2) ad	liabatic 3)	isobaric	4) irreversible	
13.	The slopes of isother	rmal and adiab	atic curves a	re related as		
	1) isothermal curve s	slope = adiabat	tic curve slop	be		
	2) isothermal curve s	slope = $\gamma \times adi$	iabatic curve	slope		
	3) adiabatic curve slo	$ope = \gamma \times isot$	hermal curve	e slope		
	,	1		1		
	4) adiabatic curve slo	ope = $\frac{1}{2}$ × isoth	ermal curve s	slope		
14	A monoatomic gas a	∠ at a pressure P	having a v	olume V exi	nands isothermally to a volume 2	V and then
*	adiabatically to a vol	lume 16V. The	e final pressu	re of the gas	s is :	v und then
	5		rinar pressa	ie of the gus		
	(take $\gamma = \frac{3}{3}$)					
	5		р			
	1) 64P	2) 32P	3) $\frac{1}{64}$		4) 16P	
15	A diatomic ideal cas	is compresso	04 Ileoitedia b	ly to of its in	nitial volume. If the initial temper	ature of the
13,	as is Ti (in Kalvin)	and the final t	emperature is	a T i the w	alue of a is	
	1) 8	2) 4	3) 3	5 <i>a</i> 1 <i>i</i> , uit V	4) 5	
	1)0	<i>2)</i> +	575		T <i>J</i> J	

16. The relation between U, P and V for an ideal gas in an adiabatic process is given by relation U = a + bPV. Find the value of adiabatic exponent (γ) of this gas. 2) $\frac{b+1}{a}$ 1) $\frac{b+1}{b}$ 3) $\frac{a+1}{b}$ 4) $\frac{a}{a+b}$ 17. Which of the following processes is adiabatic? 1) melting of ice 2) bursting of tyre 3) motion of piston of an engine with constant speed 4) None of these A point on P - V diagram represents 18. 1) the condition of a system 2) work done on or by the system 3) work done in a cyclic process 4) a thermodynamic process 19. Choose the incorrect statement related to an isobaric process. 1) $\frac{V}{T} = constant$ 2) $W = P\Delta V$ 3) Heat given to a system is used up in raising the temperature only. 4) $\Delta Q > W$ 20. When heat is given to a gas in an isothermal change, the result will be 1) external work done 2) rise in temperature 3) increase in internal energy 4) external work done and also rise in temperature 21. One mole of a diatomic ideal gas undergoes a cyclic process ABC as shown in figure. The process BC is adiabatic. The temperatures at A, B and C are 400 K, 800 K and 600 K respectively. Choose the correct statement: В 800 K 600 k 400 K 1) The change in internal energy in whole cyclic process is 250 R. 2) The change in internal energy in the process CA is 700 R. 3) The change in internal energy in the process AB is -350 R. 4) The change in internal energy in the process BC is -500 R. 22. An ideal gas is initially at P_1 , V_1 is expanded to P_2 , V_2 and then compressed adiabatically to the same

22. An ideal gas is initially at P_1 , V_1 is expanded to P_2 , V_2 and then compressed adiabatically to the same volume V_1 and pressure P_3 . If *W* is the net work done by the gas in complete process which of the following is true ?

1)
$$W > 0$$
; $P_3 > P_1$ 2) $W < 0$; $P_3 > P_1$ 3) $W > 0$; $P_3 < P_1$ 4) $W < 0$; $P_3 < P_1$

23. Four curves A, B, C and D are drawn in the figure for a given amount of a gas. The curves which represent adiabatic and isothermal changes are

	1) C and D respectively 2) D and C respectively 3) A and B respectively 4) B and A respectively						
24.	An ideal gas A and a	real gas B have their v	volumes increased from	n V to $2V$ under isothermal conditions.			
	The increase in interr	nal energy					
	1) will be same in bo	th A and B	2) will be zero	o in both the gases			
	3) of <i>B</i> will be more	than that of A	4) of A will b	e more than that of <i>B</i>			
25.	A cube of side 5 cm n	nade of iron and having	g a mass of 1500g is he	ated from 25° C to 400°C. The specific			
	heat for iron is 0.12	cal/g°C and the coeffic	cient of volume expan	sion is $3.5 \times 10^{-5/\circ}$ C, the change in the			
	internal energy of the	e cube is (atm pressure	$= 1 \times 10^5 \text{N/m}^2$				
	1) 320 kI	2) 282 kI	3) 141 kI	4) 423 kI			
26	At 27°C a gas is con	npressed suddenly suc	h that its pressure bec	(1/8) of original pressure Final			
20.	temperature will be	v = 5/3	in that its pressure bee	tomes (1/6) of original pressure. I mar			
	1) 450 K	(-3,3)	2) 14290	4) 20790			
27	1) 450 K	2) 500 K	$3) - 142^{\circ}$	4) 327°C			
21.	A sample of gas expa	ands from volume v I	to v_2 . The amount of	work done by the gas is greatest when			
	the expansion is						
20	1) isothermal	2) isobaric $5(2)$ is the table	3) adiabatic	4) equal in all cases			
28.	When an ideal gas (γ	T = 5/3) is heated under	constant pressure, the	n what percentage of given heat energy			
	will be utilised in doi	ing external work?					
	1) <mark>40</mark> %	2) 30%	3) 60%	4) 20%			
29.	There are two proces	sses ABC and DEF. In	which of the process	is the amount of work done by the gas			
	g <mark>rea</mark> ter?						
		. 1					
		1 ²⁴	C				
		21	B/				
		P 18					
		15					
		12					
			6 9 12 15				
		2) DEE	3) Equal in both proc	passas (1) It cannot be predicted			
30	I) ADC	2) DEP with volume V1 is com	5) Equal III both proc	q_{as} of volume V2 at a constant external			
50.	onn mass of a figure	with volume v 1 is compared by T If the latent 1	bast of eveneration for	gas of volume v_2 at a constant external the given mass is L then the increase			
	in the internel energy	of the system is	near of evaporation for	the given mass is L, then the increase			
	1) Zara	of the system is $2 P(V_2 - V_1)$	2) I D(U2 U1)				
21	1) Zero	2) $P(V2 - V1)$	S = P(V2 - V1)	4)L			
31.	The temperature of 5	moles of a gas which v	was held at constant vo	lume was changed from 100° to 120°C.			
	The change in the int	ernal energy of the gas	was found to be 80 jo	ule, the total heat capacity of the gas at			
	constant volume will	be equal to					
	1) 8 joule per K	2) 0.8 joule per K	3) 4.0 joule per K	4) 0.4 joule per K			
32.	Specific heat of gas i	n adiabatic process is					
	1) zero	2) infinite	3) 1	4) 150			
33.	During an adiabatic	process an object does	s 100J of work and its	temperature decreases by 5K. During			
	another process it doe	es 25J of work and its to	emperature decreases b	by 5K. Its heat capacity for 2nd process			
	is						
	1) 20 J/K	2) 24 J/K	3) 15 J/K	4) 100 J/K			

34.	A mass of ideal gas slowly compressed	as at pressure P is exp and a diabatically to its c	panded isothermally to original volume. Assum	four times the original volume and then hing γ to be 1.5, the new pressure of the
	gas is			
	1) 2 P	2) P	3) 4 P	4) P/2
35.	On <i>P-V</i> coordinate 0.0025 m^3 is equal point is :	s, the slope of an isot to -400 MPa/m^3 . If C	thermal curve of a gas a $C_p / C_v = 1.4$, the slope of	at a pressure $P = 1$ M Pa and volume $V =$ of the adiabatic curve passing through this
	1) -56 MPa/m^3	2) -400 MPa/m^3	3) -560 MPa/m^3	4) None of these
36.	An ideal gas at atn its initial value. If	nospheric pressure is a the final pressure of g	adiabatically compresse as is 128 atmospheres,	ed so that its density becomes 32 times of the value of γ of the gas is :
	1) 1.5	2) 1.4	3) 1.3	4) 1.6
37.	An ideal monaton volume 2V and a t	tic gas with pressure final pressure <i>Pi</i> . If th	<i>P</i> , volume <i>V</i> and temp he same gas is expande	perature T is expanded isothermally to a diabatically to a volume $2V$, the final
	pressure is <i>Pa</i> . The	e ratio $\frac{P_a}{P_i}$ is		
	1) $2^{-1/3}$	2) $2^{1/3}$	3) $2^{2/3}$	4) $2^{-2/3}$
38.	A thermodynamic	system is taken from	state A to B along ACI	B and is brought back to A along BDA as
	sh <mark>ow</mark> n in the PV d	iagram. The net work	done during the comple	ete cycle is given by the area
		₽↑		
		P		
			Cr /	
		L		
		2) $ACBB'A'A$		
20	$\frac{1}{1} \prod_{n=1}^{n} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n}$	2) ACDDAA	J ACDDA	4) ADDRA
37.	of specific heats of will be	this gas at constant pr	ressure and at constant v	volume is $5/3$, the final temperature of gas
	1) $(T-4) K$	2) $(T + 2.4) K$	3) $(T - 2.4) K$	4) $(T+4) K$
40.	An ideal gas at 27°	C is compressed adial	patically to 8/27 of its o	riginal volume. The rise in temperature is
	$\left(\gamma - \frac{5}{2}\right)$			
	$\left(\gamma - \frac{1}{3} \right)$			
	1) 475°C	2) 375°C	3) 275°C	4) 175°C
41.	If the ratio of specific internal energy of	tific heat of a gas at of a mass of gas, when the	constant pressure to that the volume changes from	at at constant volume is g, the change in V to $2V$ at constant pressure P , is
	R		PV	γΡV
	1) $\frac{1}{(\gamma-1)}$	2) PV	3) $\frac{\gamma}{(\gamma-1)}$	4) $\frac{1}{(\gamma-1)}$
42.	An ideal gas under	poing adiabatic chang	be has the following pre	essure-temperature relationship
	1) $\mathbf{P}^{\gamma-1}\mathbf{T}^{\gamma} = \text{consta}$	nt 2) $P^{\gamma}T^{\gamma-1} = const$	tant 3) $P^{\gamma} T^{1-\gamma} = constant$	ant 4) $P^{1-\gamma} T^{\gamma} = constant$
43.	The pressure insid	e a tyre is 4 times that	of atmosphere. If the ty	vre bursts suddenly at temperature 300 K.
	what will be the ne	ew temperature?		, , ,
	1) $300(4)^{7/2}$	2) $300(4)^{2/7}$	3) $300(2)^{7/2}$	4) $300(4)^{-2/7}$
	· \ /			· · · · · ·
				24

44.	A diatomic gas initially at 18°C is comp temperature after compression will be	pressed adiabatically to one eighth of its original volume. The
	1) 18°C 2) 887°C	3) 327°C 4) 395.5°C
45.	In isothermal process	
	1) internal energy remains constant	2) specific heat of gas is zero
	3) exchange of heat does not occur	4) internal energy decreases
TC	OPIC 3: Carnot Engine, Refrige	erator and Second Law of Thermodynamics
46.	Even Carnot engine cannot give 100% eff	ficiency because we cannot
	1) prevent radiation 2) find ideal source	es 3) reach absolute zero temperature 4) eliminate friction
47.	A refrigerator is a	
	1) heat engine 2) an electric moto	r 3) heat engine working in backward direction 4) air cooler
48.	A carnot engine takes in 3000 kcal of hea	at from a reservoir at 627°C and gives it to a sink at 27°C. The
	work done by the engine is	
	1) $\frac{4.2}{\times 10^6}$ J 2) 8.4×10^6 J	3) $16.8 \times 10^6 \text{ J}$ 4)zero
49.	In Carnot engine efficiency is 40% at h	not reservoir temperature T. For efficiency 50% what will be
	temperature	
	o <mark>f h</mark> ot reservoir?	
	$1) \frac{T}{2}$ $2T$	3) 6T (1) $\frac{6T}{1}$
		5) 51 4) 5
50.	"Heat cannot by itself flow from a body	y at lower temperature to a body at higher temperature" is a
	statement or	
	con <mark>seq</mark> uence of	
	1) second law of thermodynamics	2) conservation of momentum
	3) conservation of mass	4) first law of thermodynamics
51.	An engine operates by taking n moles of	f an ideal gas through the cycle ABCDA shown in figure. The
	thermal efficiency of the engine is : (Take	$e C_v = 1.5 R$, where R is gas constant)
	JP	B C
	210	
	Î	
	P	
	Po	A D
		V ₀ 2V ₀
	1) 0 24 2)0 15	$3)0\ 32$ $4)0\ 08$
52	A Carnot engine whose efficiency is 40%	receives heat at 500K. If the efficiency is to be 50%, the source
52.	temperature for the same exhaust tempera	ature is
	1) 900 K 2) 600 K	3) 700 K 4) 800 K
53.	If the temperatures of source and sink of	a Carnot engine having efficiency h are each decreased by 100
	K. then the efficiency	
	1) remains constant 2) becomes 1	3) decreases 4) increases

54.	The coefficient of	f performance of a re	frigerator is 5. If the inst	ide temperature of freezer is	-20°C, then the
	temperature of th	e surroundings to wh	nich it rejects heat is		
	1) 41°C	2) 11°C	3) 21°C	4) 31°C	
55.	If the energy input	ut to a Carnot engine	e is thrice the work it pe	rforms then, the fraction of	energy rejected
	to the sink is				
	1) 1/3	2) 1/4	3) 2/5	4) 2/3	
56.	A Carnot engine	absorbs 1000 J of he	at energy from a reserve	oir at 127°C and rejects 600.	J of heat energy
	during each cycle	e. The efficiency of e	ngine and temperature of	of sink will be:	
	1) 20% and -43°	$^{\circ}C$ 2) 40% and – 3	3°C 3) 50% and – 20	°C 4) 70% and – 10°C	
57.	An ideal gas heat	t engine operates in	Carnot cycle between 22	27°C and 127°C. It absorbs	6×10^4 cals of
	heat at higher ten	perature. Amount o	f heat converted to work	c is	
	1) 4.8×10^4 cals	2) 6×10^4 cals	3) 2.4×10^4 cals	4) 1.2×10^4 cals	
58.	A carnot's engine	e takes 300 calories	of heat at 500 K and re	ejects 150 calories of heat t	o the sink. The
	temperature of th	e sink is			
	1) 1000 K	2) 750 K	3) 25 <mark>0 K</mark>	4) 125 K	
59.	The first operatio	n involved in a carno	ot cycle is		
	1) isothermal exp	ansion	2) ad <mark>iabatic expa</mark>	ansion	
	3) isothermal con	npression	4) ad <mark>iabatic</mark> com	pression	
60.	Which of the foll	owing processes is r	eversible?		
	1) Transfer of hea	at by conduction	2) Transfer of he	eat by radiation	
	3) Isothermal cor	npression	4) Electrical hea	ting of a nichrome wire	
		lan			
		NFFT PRF	VIOUS YEAR	S QUESTIONS	
1.	The efficiency of	an ideal heat engine	working between the fr	eezing point and boiling poi	int of water, is
	2	U	U		[2018]
	1) 26.8%	2) 20%	3) 12.5%	4) 6.25%	
2.	The volume (V)	of a monatomic gas	varies with its temperate	ure (T), as shown in the grap	ph. The ratio of
	work done by the	gas, to the heat abso	orbed by it, when it unde	ergoes a change from state A	(2018)
	VI				(2010)
	↑ B∠				
	A				
	$o \rightarrow T$				
	1) 2/5	2)2/3	3)2/7	4) 1/3	
3.	A sample of 0.1	g of water at 100°C	and normal pressure (1	1.013×105 Nm–2) requires	s 54 cal of heat
	energy to conver	t to steam at 100°C	. If the volume of the s	steam produced is 167.1 cc	, the change in
	internal energy of	t the sample, 1s 2208.7 I	2) 9/ 5 I	4) 4 2 2 I	[2018]
4	1) 104.5 J Thermodynamic	2) 200.7 J	of the following diag	4) 42.2 J	[2017]
7.	Match the follow	ing	the following diag	i aiii.	
		8			

	Column-1	Column-2
	P. Process I	A. Adiabatic
	Q. Process II	B. Isobaric
	R. Process III	C. Isochoric
	S. Process IV	D. Isothermal
	1) $P \rightarrow C, Q \rightarrow A, R \rightarrow D, S \rightarrow B$	
	2) $P \rightarrow C, Q \rightarrow D, R \rightarrow B, S \rightarrow A$	
	3) $P \rightarrow D, Q \rightarrow B, R \rightarrow A, S \rightarrow C$	
	4) $P \rightarrow A, Q \rightarrow C, R \rightarrow D, S \rightarrow B$	
5.	A carnot engine having an efficiency of 110 the system is 10 J, the amount of energy ab 1) 90 J 2) 99 J	0 as heat engine, is used as a refrigerator. If the work done on sorbed from the reservoir at lower temperature is :- [2017] 3) 100 J 4) 1 J
5.	A refrigerator works between 4°C and 30°C	. It is required to remove 600 calories of heat every second in
	order to keep the temperature of the refriger	rated space constant. The power required is: (Take 1 cal = 4.2
	joules)	[2016]
-	1) 2.365 W 2) 23.65 W	3) 230.5 W 4) 2365 W
/.	A gas is compressed isothermally to half its	initial volume. The same gas is compressed separately through
	an adiabatic process until its volume is agained the gas is the ga	n reduced to nair. Then [2016]
	1) Compressing the gas isothermally will re	equire more work to be done.
	2) Compressing the gas infough adiabatic p	abatically will require the same amount of work
	4) Which of the case (whether compression	abalically will require the same allount of work.
	4) which of the case (whether compression more work will depend upon the stornicity.	of the gas
8	Figure below shows two paths that may be	taken by a gas to go from a state Λ to a state C [2015]
0.	In process AB 400 L of heat is added to the	system and in process BC 100 L of heat is added to the system
	The heat absorbed by the system in the pro-	cess AC will be
	The near dosorded by the system in the proc $6 \times 10^4 \text{ Pa}$ $2 \times 10^4 \text{ Pa}$ $2 \times 10^{-3} \text{ m}^3 4 \times 10^{-3} \text{ m}^3$ $V \rightarrow$	
	1) 500 J 2) 460 J	3) 300 J 4) 380 J
9.	An ideal gas is compressed to half its initial	volume by means of several processes. Which of the process
	results in the maximum work done on the g	as? [2015]
10	1) Isobaric 2) Isochoric	3) Isothermal 4) Adiabatic
10.	The coefficient of performance of a refrige	rator is 5. If the inside temperature of freezer is -20° C, then
	the temperature of the surroundings to whice	ch it rejects heat is [2015]
	1) 41°C 2) 11°C	3) 21°C 4) 31°C

18.	Two cylinder gas at standa insulated. Th 1) isobaric An ideal gas Those proce adiabatic pro	rs A and ard tem e stop c underg sses ar cess am	 1 B of equaperature a cock is successful a	al capacity a and pressure Idenly opend othermal ifferent proc c, isotherm 3 and 4 is	are connected. B is connected. B is connected. The provide the provided of the	etted to each o mpletely eva rocess is) adiabatic m the same in fic and isoch -4 -3 -2 V	ther via a acuated. The oric. The oric. The oric. The oricle of the original of th	stop cock. A The entire sys 4) isochoric e as shown in e curve whic	contains an ide stem is thermal [NEET – 202 the figure below th represents the [NEET – 2022]	all ly 0] w. he 2]
		NC	ERT LIN	IE BY LIN		ESTIONS	– ANS	WERS		
1.	(c)	2.	(d)	3.	(c)	4.	(a)	5.	(a)	
6.	(b)	7.	(c)	8.	(c)	9.	(c)	10.	(b)	
11.	(d)	12.	(c)	13.	(d)	14.	(d)	15.	(a)	
16.	(a)	17.	(d)	18.	(c)	19.	(b)	20.	(a)	
			NCE	RT BASED	QUES	IONS-AN	<u>SW</u> ERS			
1	а	2	С	3	b	4	а	5	b	
6	а	7	b	8	С	9	С	10	С	
11	С	12	d	13	d	14	а	15	b	
16	а	17	b	18	а	19	b	20	4	
21	3	22	2	23	4	24	1	25	3	
26	2	27	2	28	2	29	1	30	1	
31	3	32	3	33	4	34	4	35	2	
36	3	37	4	38	2	39	4	40	4	
41	3	42	2	43	4	44	1	45	2	
46	2	47	1	48	1	49	1	50	2	

TOPIC WISE PRACTICE QUESTIONS - ANSWERS										
1)	2 2) 3	3) 2	4) 4	5) 2	6) 1	7) 2	8) 4	9) 4	10) 3	
11)	3 12) 1	13) 3	14) 3	15) 2	16) 1	17) 2	18) 1	19) 3	20) 1	
21)	4 22) 2	23) 3	24) 2	25) 2	26) 3	27) 1	28) 1	29) 2	30) 3	
31)	3 32) 1	33) 3	34) 1	35) 3	36) 2	37) 4	38) 3	39) 1	40) 2	
41)	3 42) 4	43) 4	44) 4	45) 1	46) 3	47) 3	48) 2	49) 4	50) 1	
51)	2 52) 2	53) 4	54) 4	55) 4	56) 2	57) 4	58) 3	59) 1	60) 3	
NEET PREVIOUS YEARS QUESTIONS-ANSWERS										
1)	1 2) 1	3) 2	4) 1	5) 1	6) 3	7) 2	8) 2	9) 4	10) 4	
11)	3 12) 4	13) 2	14) 2	15) 2	16) 3	17) 2	18) 3	19) 2		
	TC			CTICE	OUECTI				<u> </u>	
1. (b) First law of thermodynamics is based on conservation of energy principle. 2. (c) Work is a path function. The remaining three parameters are state function. 3. (b) pressure of the gas 4. (d) $\Delta Q = \Delta U + \Delta W \Rightarrow 2 \times 10^3 \times 4.2 = \Delta U + 500$ $\Rightarrow \Delta U = 7900J$ 5. (b) $\Delta Q = \Delta U + \Delta W$ $\Rightarrow \Delta W = Q - \Delta U = 110 - 40 = 70 J$										
6. (a) From the first law of thermodynamics dQ = dU + dW Here $dW = 0$ (given) $\therefore dQ = dU$ Now since $dQ < 0$ (given) $\therefore dQ$ is negative $\Rightarrow dU = -ve \Rightarrow dU$ decreases. \Rightarrow Temperature decreases.										
7. (b) in liquid state is less than that in gaseous state 8. (d) According to first law of thermodynamics $\Delta Q = \Delta U + \Delta W$ $\Delta U = \Delta Q - \Delta W$ $\Delta Q = 35J, \ \Delta W = -15J$ $\therefore \Delta U = 35J - (-15J) = 50J$ [Note : ΔW is negative because work is done on the system.]										
9. 10.	 9. (d) The first law of thermodynamics states the principle of conservation of energy. It introduces the concept of the internal energy. And it is applicable for any cycle. Hence, 1 and 4 are the incorrect statements regarding the first law of thermodynamics. 10. (c) Work done = Pressure × Change in volume We are given that the system undergoes contraction. This means that V₂ will be less than V₁ 									
11. 12. 13.	 (c) By zeroth law of thermodynamics, there are three parts to the system. Let's say x, y, z It is given that in the question is, A system Y is neither in thermal equilibrium with Y nor with Z. But, their is possibility by Zeroth law of thermodynamics that Y and Z may be in thermal equilibrium. (a) PV = constant represents isothermal process. (c) Slope of adiabatic curve = (dP/dV)_{adi}/(dP/dV)_{iso} = +γ So slope to adiabatic curve is x = (CP/dV)_{iso} times of isothermal curve as clear also from figure 									
	SO STOPE TO ACTA	Dauc curve	15 $\gamma = \left(\frac{P}{C_v}\right)$	- jumes of 1	sounermal	curve, as c	iear aiso iro	om ngure.		

14. (c) For isothermal process
$$P_1V_1 = P_2V_2$$

 $\Rightarrow PV = P_2(2V) \Rightarrow P_2 = \frac{P}{2}$
For adiabatic process
 $P_2V_2^{\gamma} = P_3V_3^{\gamma} \Rightarrow \left(\frac{P}{2}\right)(2v)^{\gamma} = P_3(16v)^{\gamma} \Rightarrow P_3 = \frac{3}{2}\left(\frac{1}{8}\right)^{5/3} = \frac{P}{64}$
15. (b) For adiabatic process, we can write $TV^{\tau-1} = \text{constant}$
 $\gamma = \frac{7}{5}$ for diatomic gases
 $T_1V_2^{\frac{7}{5}-1} = \text{k(constant)} - \text{constant}$
 $TV_3^{\frac{7}{5}-1} = \text{k(constant)} - \text{constant}$
 $TV_3^{\frac{7}{5}-1} = \text{ar}\left(\frac{V}{32}\right)^{\frac{7}{5}-1}$; $\therefore a = 4$
16. (a) $U = a + bPV \dots (1)$
In adiabatic change
 $dU = -dW = \frac{nR}{\gamma-1}(dT) = \frac{nR}{\gamma-1}(dT)$
 $\Rightarrow U = \int dU = \frac{nR}{\gamma-1}\int dT$
 $\alpha \quad U = \left(\frac{nR}{\gamma-1}\right)T + a = \frac{PV}{\gamma-1} + a \dots (2)$
where *a* is the constant of integration.
Comparing (1) and (2), we get

$$b = \frac{1}{\gamma - 1} \Longrightarrow \gamma = \frac{b + 1}{b}$$

17. **(b)** Adiabatic process is a type of thermodynamic process that occurs without any transfer of heat or mass between the thermodynamic system and environment.

Exploding of tyre is an adiabatic process because when a tyre suddenly, the expansion happens, it decreases the temperature inside the tyre. Heat transfer takes place when it explode, due to which it can be considered that there is almost no energy exchange during the actual process. Hence, it became adiabatic process.

- 18. (a) Every point on this isothermal curve represents the condition of a system.
- 19. (c) From ideal gas law, PV=nRT In isobaric process, P is constant.

So,
$$V = \frac{nR}{P}T$$

 $\Rightarrow V = kT$
 $\therefore \frac{V}{T} = \text{constant} \rightarrow (1)$
 $W = \int P \, dV$
 $\Rightarrow W = \int P \frac{nr\Delta T}{P}$
 $\Rightarrow W = p \int dT$
 $\Rightarrow W = p\Delta T \rightarrow (2)$

.- D

Heat given to the system can also decrease the temperature.

- 20. (a) When heat is given to a gas in an isothermal change, the result will be External work done and also rise in temp.
- 21. (d) In cyclic process, change in total internal energy is zero. $\Delta U_{\text{cyclic}} = 0$

$$\Delta U_{BC} = nC_v \Delta T = 1 \times \frac{5R}{2} \Delta T$$

Where, $C_V = molar$ specific heat at constant volume.

For BC,
$$\Delta T = -200 \text{ K}$$
 $\therefore \Delta U_{BC} = -500 \text{ R}$

22. (b) In the first process W is + ve as ΔV is positive, in the second process W is - ve as ΔV is – ve and area under the curve of second process is more

 \therefore Net Work < 0 and also $P_3 > P_1$ _1

$$P_3$$

 P_1
 P_2
 V_1 V_2

23. (c) Curve A, B shows expansion. For expansion of a gas,

W_{isothermal} > W_{adiabatic}

 $P_{isothermal} > P_{adiabatic}$

 $T_{isothermal} > T_{adiabatic}$

(a)

 \Rightarrow Slope of curve for isothermal change < slope of curve for adiabatic change.

So, curve B shows isothermal change and curve A shows adiabatic change.

- 24. (b) Under isothermal conditions, there is no change in internal energy.
- 25. **(b)** $Q = mC \Delta T = 1.5 \times 0.12 \times 4200 \times (400 - 25) = 2.83 \times 10^5 \text{ J}$ $W = P(\Delta V) = P(V\gamma \Delta T)$ $= 10^5 \times (5 \times 10^{-2})^3 \times 3.5 \times 10^{-5} \times 375 = 0.164 \text{ J}$ Thus $Q = \Delta U + W$ or $2.83 \times 10^5 = \Delta U + 0.164$; $\Delta U = 282$ kJ (c) $T_1^{\gamma} P_1^{1-\gamma} = T_2^{\gamma} P_2^{1-\gamma}$ 26.
- 27. (a) At constant pressure, the PV curve enclose maximum area. Hence work will be maximum in that case compared to other processes

28. (a)
$$\Delta Q = \Delta U + \Delta W$$

 $\Rightarrow \frac{\Delta W}{\Delta Q} = 1 - \frac{\Delta U}{\Delta Q} = 1 - \frac{nC_V dT}{nC_P dT} \Rightarrow \frac{\Delta W}{\Delta Q} = 1 - \frac{C_V}{C_P} = 1 - \frac{3}{5} = \frac{2}{5} = 0.4$

29. (b)
$$W_{asc} = \frac{\pi^2}{2} = \frac{\pi(6)^2}{2} = 18\pi$$

 $W_{DEF} = \frac{\pi \times 3^2}{2} + \frac{\pi \times 3^2}{2} + (15-12) \times 18 = 6.75\pi + 54$
 $W_{DEF} > W_{ASC}$
30. (c) $Q = mL = 1 \times L = L; W = P(V_2 - V_1)$
Now $Q = AU + W = nT = AU + P(V_2 V_1)$
31. (c) $dU = nC \vee dT$ or $80 = 5 \times C \vee (120 - 100)$
 $C \times = 4.0$ joule/K
32. (a) Zero
(c) $C = 0 = h + eat capacity of 2nd process than
 $-(C) 5 = dU + dW = -100 + 25 = -75$... $C = 15 J/K$
34. (a) Let P and V be the initial pressure and volume of ideal gas. After isothermal expansion, pressure is P/4.
So volume is $4V$.
Let P be the heat capacity of $2nd$ process then
 $-(C) 5 = dU + dW = -100 + 25 = -75$... $C = 15 J/K$
34. (a) Let P and V be the initial pressure and volume of ideal gas. After isothermal expansion, pressure is P/4.
So volume is $4V$.
Let P be the pressure after adiabatic compression. Then
 $P_1V' = (P/4)(4V)^{\vee} P_1 = (P/4)(4)^{2^2} = 2P$
35. (c) Slope of adiabatic curve γ x slope of isothermal curve $1.4 \times (-400) = -560$ MP a/m²
36. (b) Volume of the gas $\Rightarrow v = \frac{m}{a}$ and using $PV^2 = constant$
 $\frac{P}{P} = \frac{V}{V} = \left(\frac{d}{d}\right)^2$ or $128 - (32)^2$; $\therefore q = \frac{7}{2} = 1.4$
37. (d) For isothermal process :
 $PV = P_1, 2V$
 $P = 2P_1,(n)$
For adiabatic process
 $PV' = P_1, (2V)^{1/2} (\cdot, \text{ for monatomic gas $\gamma = 5/3$) or $2P_1V^{\frac{5}{3}} = P_a(2V)^{\frac{5}{3}}$ [From (i)]
 $\Rightarrow \frac{P_1}{P_2} = \frac{2}{2} \Rightarrow \frac{P_2}{P_4} = 2^{\frac{2}{7}}$
38. (c) Work done = Area under curve $ACBDA$
39. (a) $T_1 = T, W = 6R$ joules, $\gamma = \frac{5}{3}$
 $W = \frac{P_1V - P_2V_2}{\gamma - 1} = \frac{nRT_1 - nRT_2}{\gamma - 1} = \frac{nR(T_1 - T_2)}{\gamma - 1}$; $n = 1, T_1 = T \Rightarrow \frac{R(T - T_3)}{5/3 - 1} = 6R \Rightarrow T_2 = (T - 4)K$
40. (b) Hor an adiabatic process $TV^{\tau - 1}$ constant. Therefore
 $\frac{T_1}{T_2} = [\frac{V_2}{V_1}]^{\frac{3}{1}}^{-1}$
 $= 300 \left[\frac{2\pi}{3}\right]^{\frac{3}{1}}^{-1} = 300 \left[\frac{2\pi}{3}\right]^{\frac{27}{3}} = 675K$
 $\Rightarrow \Delta T = 675 - 300 = 375K$
41. (c) Change in intermal energy is equal to work done in adiabatic system
 $\Delta W = -\Delta U$ (Expansion in the system)$$

$$= -\frac{1}{\gamma-1} (RP_1 - P_1 Y_2)$$

$$\Delta U = \frac{1}{1-\gamma} (P_2 Y_2 - RY_1)$$
Here, $V_1 = V, Y_2 = 2V$

$$\therefore \Delta U = \frac{1}{1-\gamma} [P \times 2V - PV] = \frac{PV}{1-\gamma} \Rightarrow \Delta U = -\frac{PV}{\gamma-1}$$
42. (d) We know that in adiabatic process,
 $PV^{-1} = constant ...(1)$
From ideal gas equation, we know that
 $PV = nRT \Rightarrow V = \frac{P}{P} ...(2)$
Putting the value from equation (2) in equation (1),
 $P(\frac{nRT}{P})^{V} = constant $\Rightarrow P^{(1-\gamma)}T^{V} = constant$
43. (d) Under adiabatic change
$$\frac{T_2}{T_1} = \left(\frac{P_1}{P_2}\right)^{\frac{1-\gamma}{\gamma}} \text{ or } T_2 = T_1(P_1/P_2)^{\frac{1-\gamma}{\gamma}}$$

$$\frac{1-(7/5)}{\tau}; \gamma = 1.4 = 7/5 \text{ for air}$$
or $T_2 = 300(4/1)^{\frac{C7}{(7/5)}}; \gamma = 1.4 = 7/5 \text{ for air}$
we know that $TV^{-1} = constant$
44. (d) $T_1 = 18^{0}C = (273 \pm 18) = 291K$ and $V_2 = V_1/8$
We know that $TV^{-1} = constant$
45. (a) internal energy remains constant.
46. (c) In Cannot's cycle we assume frictionless piston, absolute insulation and ideal source and sink (reservoirs). The efficiency of Cannot's cycle is given by $\eta = 1 - \frac{T_2}{T_1}$
For $\eta = 1$ or 100 %, $T_2 = 0$ K.
The temperature of 0 K (absolute zero) can not be obtained.
47. (e) The working of an air conditioner is similar to the working of a refrigerator. An air conditioner removes heat from the room, does some work and rejects the heat to the surroundings. As air conditioner is put in the middle of the room then due to continuous, external work the room will become slightly warreer.
48. (b) $\frac{W}{Q} = (-\frac{T_1}{T_1} - [\frac{273+27}{273+27}] = \frac{2}{3}; \dots W = \frac{2}{3}Q_1 = \frac{2}{3} \times 3000 - 2000 \text{ kcal} = 8.4 \times 10^{17} J$
49. (d) $\eta = 1 - \frac{T_1}{T_1}$
The T (Demograture of the room then due to continuous, external work the room will become slightly warreer.$

For $\eta = 50\%$, $\frac{50}{100} = 1 - \frac{\frac{3}{5}T}{T_1} \Longrightarrow T_1 = \frac{6}{5}T$

50. (a) This is a statement of second law of thermodynamics 51. (**b**) Work-done (W) = P_0V_0 According to principle of calorimetry Heat given = $Q_{AB} = Q_{BC}$ = $nC_{v}dT_{AB} + nC_{P}dT_{BC} = \frac{3}{2}(nRT_{B} - nRT_{A}) + \frac{5}{2}(nRT_{C} - nRT_{B})$ $=\frac{3}{2}(2P_{0}V_{0}-P_{0}V_{0})+\frac{5}{2}(4P_{0}V_{0}-2P_{0}V_{0})=\frac{13}{2}P_{0}V_{0}$ Thermal efficiency of engine $(\eta) = \frac{W}{Q_{\text{sing}}} = \frac{2}{13} = 0.15$ (**b**) Efficiency of Carnot engine (η_1) 52. =40% = 0.4: Heat intake = 500 K and New efficiency $(\eta_2) = 50 \% = 0.5$. The efficiency $(\eta) = 1 - \frac{T_2}{T_1}$ or $\frac{T_2}{T_2} = 1 - \eta$. For first case, $\frac{T_2}{500} = 1 - 0.4$ or $T_2 = 300$ K. For second case, $\frac{300}{T}$ = 1 - 0.5 or $T_1 = 600$ K. (d) Efficiency, $\eta = \left(1 - \frac{T_2}{T}\right) \times 100$; $\eta' = 1 - \frac{(T_2 - 100)}{(T_1 - 100)} \times 100 = \left(\frac{T_1 - T_2}{T_1 - 100}\right) \times 100$ 53. Comparing with h we get, the efficiency increases. 54. (d) Coefficient of performance, $Cop = \frac{T_2}{T_1 - T_2} \quad 5 = \frac{273 - 20}{T_1 - (273 - 20)} = \frac{253}{T_1 - 253}$ $5T_1 = 253 + (5 \times 253) = 1518$ $5T_1 - (5 \times 253) = 253$; \therefore T₁ = $\frac{1518}{5}$ = 303.6 or T₁ = 303.6 - 273 = 30.6 \cong 31°C (d) Efficiency $\eta = \frac{W_{output}}{Heat} = \frac{W}{3W} = \frac{1}{3}; \qquad \eta = 1 - \frac{Q_2}{Q_2} = \frac{1}{3} \therefore \frac{Q_2}{Q_2} = \frac{2}{3}$ 55. 56. **(b)** Given : $Q_1 = 1000 \text{ J}$, $Q_2 = 600 \text{ J}$ $T_1 = 127^{\circ}C = 400 \text{ K}, T_2 = ? \eta = ?$ Efficiency of Carnot engine $\eta = \frac{W}{\Omega} \times 100\%$ or $\eta = \frac{Q_2 - Q_1}{Q_1} \times 100\%$ or, $\eta = \frac{1000 - 600}{1000} \times 100\%$; $\eta = 40\%$ Now, for Carnot cycle $\frac{Q_2}{Q_1} = \frac{T_2}{T_1}$; $\frac{600}{1000} = \frac{T_2}{400} \Rightarrow T_2 = \frac{600 \times 400}{1000} = 240 \text{K} = 240 - 273$; $\therefore T_2 = -33^{\circ}\text{C}$ 57. (d) For a Carnot engine, efficiency

$$e = 1 - \frac{T_{s}}{T_{t}} = 1 - \frac{127 + 273}{227 + 273} = 1 - \frac{400}{500} = \frac{1}{5}$$
Now, $e = \frac{Work output}{Heat input} = \frac{W}{6 \times 10^{4}}$; $W = e \times 6 \times 10^{4} = \frac{1}{5} \times 6 \times 10^{4} = 1.2 \times 10^{4}$ cal
58. (c) $\eta = 1 - \frac{Q_{s}}{Q_{s}} = 1 - \frac{T_{s}}{T_{s}} \Rightarrow \frac{Q_{s}}{Q_{s}} = \frac{T_{s}}{T_{s}}$; So, $T_{s} = \frac{Q_{s} \times T_{s}}{Q_{s}} = \frac{150 \times 500}{300} = 250 K$
59. (a) The Carnot cycle consists of the following four processes: A reversible isothermal gas expansion
process. In this process, the ideal gas in the system absorbs q in amount heat from a heat source at a
high temperature Thigh, expands and does work on surroundings.
60. (c) For process to be reversible it must be quasi-static.
For quasi-static and hence it is reversible.
NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS
1. (a) Efficiency of ideal heat engine, $\eta = \left(1 - \frac{T_{s}}{T_{s}}\right)$
Sink temperature, $T_{1} = 0^{\circ}C = 100 + 273 = 373 K$
Source temperature, $T_{1} = 0^{\circ}C = 100 + 273 = 273 K$
Percentage efficiency, $s_{0} = \left(1 - \frac{T_{s}}{T_{s}}\right) \times 100 = \left(\frac{12.273}{373}\right) \times 100 = \left(\frac{100}{373}\right) \times 100 = 26.8\%$
2. (a) Gas is monatomic, so $C_{s} = \frac{5}{2R}$
Given process is isoharic
 $\therefore dQ = nC_{s} dT \Rightarrow dQ - n\left(\frac{5}{2}R\right) dT$
dW = P dV = n RdT
 \therefore Required ratio $= \frac{dW}{4Q} = \frac{nRdT}{n\left(\frac{5}{2}R\right) dT} = \frac{2}{5}$
3. (b) Using first law of thermodynamics equation,
 $\Delta Q = \Delta U + \Delta W$
 $= 54 \times 4.18 = \Delta U + 1.013 \times 10^{\circ}(167.1 \times 10^{\circ} - 0) \Rightarrow \Delta V = 208.71 (\therefore \Delta W = P \Delta V)$
4. (a) Process I volume is constant hence, it is isochric
In process I volume is constant hence, it is isochric
In process I volume is constant hence, it is isochric
In process I volume is constant hence, it is isochric
In process I volume is constant hence, it is isochric
In process I volume is constant hence, it is isochric
10 work done on system W = 10J
Coefficient of performance of refrigerator $\beta = \frac{Q_{s}}{W} = \frac{1-\eta}{10} = \frac{1-\eta}{10} = \frac{10}{10} = \frac{10}{10}$

 $\beta = \frac{Q_2}{W} = \frac{T_2}{T_1 - T_2}$ (Where Q₂ is heat removed) **Given:** $T_2 = 4^{\circ}C = 4 + 273 = 277 \text{ k}$ $T_1 = 30^{\circ}C = 30 + 273 = 303 \text{ k}$ $\therefore \beta = \frac{600 \times 4.2}{W} = \frac{277}{303 - 277} \Longrightarrow W = 23.65 \text{ joule}$ Power $P = \frac{W}{t} = \frac{236.5 \text{ joule}}{1 \text{ sec}} = 236.5 \text{ watt.}$ 7. (**b**) W_{ext} = negative of area with volume-axis $W_{(adiabatic)} > W_{(isothermal)}$ Ρ Adiabatic Isotherm V. $2V_{o}$ v 8. (b) In cyclic process ABCA $Q_{cycle} = W_{cycle}$ $Q_{AB} + Q_{BC} + Q_{CA} = ar. of \Delta ABC$ + 400 + 100 + $Q_{C \to A} = \frac{1}{2} (2 \times 10^{-3}) (4 \times 10^{4}) \Rightarrow Q_{C \to A} = -460 J \Rightarrow Q_{A \to C} = +460 J$ (d) Since area under the curve is maximum for adiabatic process so, work done (W = PdV) on the gas 9. will be maximum for adiabatic process Adiabatic Isothermal Isobaric 10. (d) Coefficient of performance, $Cop = \frac{T_2}{T_1 - T_2}$ $5 = \frac{273 - 20}{T_1 - (273 - 20)} = \frac{253}{T_1 - 253}$ $5T_1 - (5 \times 253) = 253$ $5T_1 = 253 + (5 \times 253) = 1518$ $\therefore T_1 = \frac{1518}{5} = 303.6$ or, $T_1 = 303.6 - 273 = 30.6 \approx 31^{\circ}C$ (c) For isothermal process $P_1V_1 = P_2V_2$ 11.

 $\Rightarrow PV = P_2(2V) \Rightarrow P_2 = \frac{P}{2}$ For adiabatic process $P_2 V_2^{\gamma} = P_3 V_3^{\gamma}$ $\Rightarrow \left(\frac{P}{2}\right)(2v)^{\gamma} = P_3 16v)^{\gamma} \Rightarrow P_3 = \frac{3}{2}\left(\frac{1}{8}\right)^{5/3} = \frac{P}{64}$ 12. (d) Work done by the system in the cycle = Area under P-V curve and V-axis $=\frac{1}{2}(2P_{0}-P_{0})(2V_{0}-V_{0})+\left[-\left(\frac{1}{2}\right)(3P_{0}-2P_{0})(2V_{0}-V_{0})\right]=\frac{P_{0}V_{0}}{2}-\frac{P_{0}V_{0}}{2}=0$ 13. (2) Adiabatic process $\Delta Q = 0$ 14. $(2) \mathbf{Q} = \Delta \mathbf{U} + \mathbf{W}$ $\Rightarrow mL = \Delta U + P(V_2 - V_1) \Rightarrow 1(2256) = \Delta U + 1 \times 10^5 (1670 \times 10^{-6}) \Rightarrow \Delta U = 2089 J$ 15. (2) the temperatures of the source and sink Efficiency of carnot engine $T_1 =$ temperature of source $T_2 =$ temperature of sink 16. (3) \mathbf{P} = constant \Rightarrow Isobaric process (2)For sphere $M = \frac{4}{3}\pi r^3 \rho \Rightarrow M \propto r^3 \Rightarrow \frac{M_1}{M_2} = \left(\frac{r_1}{r_2}\right)^3$ 17. As $Q = MS \Delta \theta$, for same value of S and $\Delta \theta$ $Q \propto M \Rightarrow \frac{Q_1}{Q_2} = \frac{M_1}{M_2} = \left(\frac{r_1}{r_2}\right)^3 = \left(\frac{3}{2}\right)^3 = \frac{27}{8}$ 18. (3) It is expanded against vacuum, so dW = 0The entire system is thermally insulated. So dQ = 0 $dT = 0 \Longrightarrow T_f - T_i = 0 \Longrightarrow T_i = T_f$ But intermediate temperature is not constant. Hence free expansion is not isothermal. Since the expansion quick in a thermally isolated system, it is adiabatic expansion

19. Adiabatic curve is more steeper