

13.PHOTOSYNTHESIS IN HIGHER PLANTS

Biology Smart Booklet Theory + NCERT MCQs + NEET PYQs

PHOTOSYNTHESIS IN HIGHER PLANTS

Photosynthesis

Photosynthesis is an enzyme regulated anabolic process of manufacture of organic compounds inside the chlorophyll containing cells from carbon dioxide and water with the help of sunlight as a source of energy.

 $6CO_2 + 12H_2O \xrightarrow{\text{Sun Light}} C_6H_{12}O_6 + 6H_2O + 6O_2 \uparrow$

Historical Perspective

Josheph Priestley (1770): Showed that plants have the ability to take up CO_2 from atmosphere and release O_2 . (Candle with bell jar and mouse expt.)

Jan Ingenhousz (1779): Release of O_2 by plants was possible only in sunlight and only by the green parts of plants. (Expt. with aquatic plant in light & dark)

Theodore de Saussure (1804): Water is an essential requirement for photosynthesis to occur.

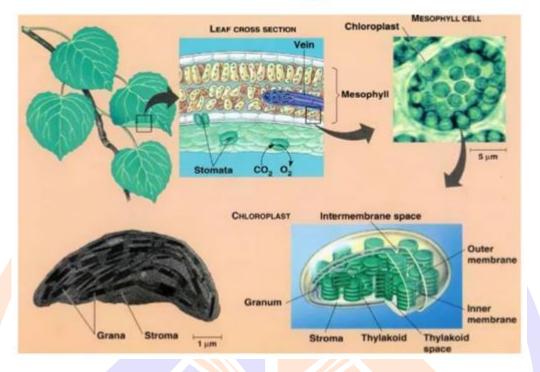
Julius Von Sachs (1854): Green parts in plant produce glucose which is stored as starch.

T.W. Engelmann (1888): The effect of different wavelength of light on photosynthesis and plotted the first action spectrum of photosynthesis.

C.B. Van Niel (1931): Photosynthesis is essentially a light dependent reaction in which hydrogen from an oxidizable compound reduces CO_2 to form sugar. He gave a simplified chemical equation of photosynthesis.

$$2H_2A + CO_2 \xrightarrow{Sun Light} 2A + CH_2O + H_2O$$

Hill (1937): Evolution of oxygen occurs in light reaction.


Calvin (1954-55): Traced the pathway of carbon fixation.

Site for photosynthesis

Photosynthesis takes place only in green parts of the plant, mostly in leaves. Within a leaf, photosynthesis occurs in mesophyll cells which contain the chloroplasts. Chloroplasts are the actual sites for photosynthesis. The thylakoids in chloroplast contain most of pigments required for capturing solar.

Energy to initiate photosynthesis: The membrane system (grana) is responsible for trapping the light energy and for the synthesis of ATP and NADPH. Biosynthetic phase (dark reaction) is carried in stroma.

Site of Photosynthesis

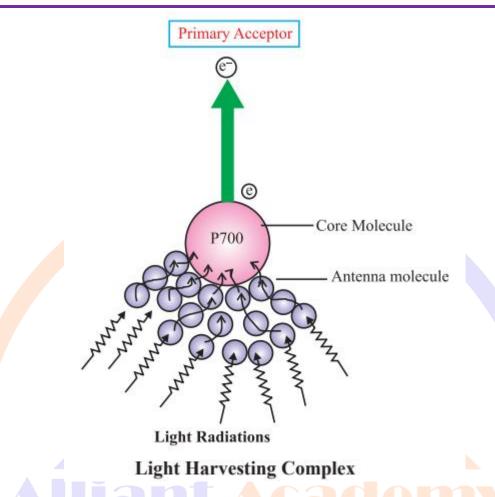
Importance of Photosynthesis

- Synthesis of organic compounds.
- Change of radiant energy into chemical energy.
- Useful products are obtained from plants gums, oils timber fire wood, resins rubber, fibers and drugs, etc.
- Balance the percentage of O₂ and CO₂ in atmosphere.
- Fossil fuels like coal, natural gas and petroleum have been formed inside the earth indirectly as a product of photosynthesis.

Pigments involved in photosynthesis

Chlorophyll a: (Bright or blue green in chromatograph). Major pigment, act as reaction center, involved in trapping and converting light into chemical energy. It is called universal photo-synthetic pigment.

Chlorophyll b: (Yellow green)


Xanthophyll's: (Yellow)

Carotenoids: (Yellow to yellow-orange)

In the blue and red regions of spectrum shows higher rate of photosynthesis.

Light Harvesting Complexes (LHC)

The light harvesting complexes are made up of hundreds of pigment molecules bound to protein within the photosystem I (PS-I) and photosystem II (PS-II). Each photosystem has all the pigments except one molecule of chlorophyll 'a' forming a light harvesting system (antennae). The reaction center (chlorophyll a) is different in both the photosystems.

Photosystem I (PS-I): Chlorophyll 'a' has an absorption peak at 700 nm (P700).

Photosystem II (PS-II): Chlorophyll 'a' has absorption peak at 680 nm (P680),

Process of photosynthesis

It includes two phases-Photochemical phase and biosynthetic phase. (Formerly known as Light reaction and dark reaction)

Photochemical phase (Light reaction): This phase includes-light absorption, splitting of water, oxygen release and formation of ATP and NADPH. It occurs in grana region of chloroplast.

Biosynthetic phase (Dark reaction): It is light independent phase, synthesis of food material (sugars). (Calvin cycle). It occurs in stroma region of chloroplast.

Photophosphorylation

The process of formation of high-energy chemicals (ATP and NADPH) in presence of light.

Non-Cyclic photophosphorylation

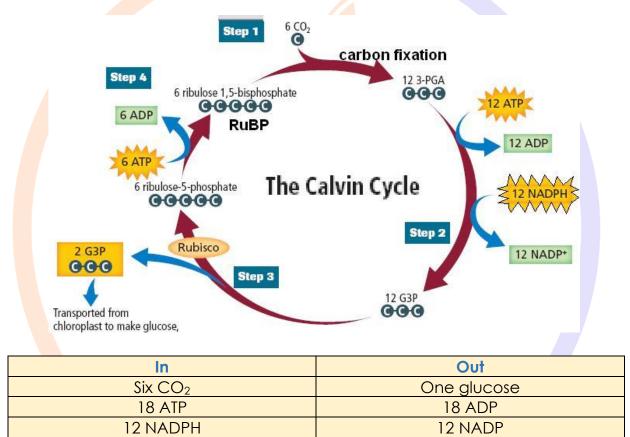
Two photosystems work in series First PSII and then PSI. These two photosystems are connected through an electron transport chain (Z. Scheme). Both ATP and NADPH + H+ are synthesized by this process. PSI and PSII are found in lamellae of grana, hence this process is carried here.

Cyclic photophosphorylation

Only PS-I works, the electron circulates within the photosystem. It happens in the stroma lamellae (possible location) because in this region PSII and NADP reductase enzyme are absent. Hence only ATP molecules are synthesized. It occurs when only light of wavelengths beyond 680 nm are available for excitation.

The Electron Transport System

- 1. Reaction center of photosystem II absorbs light of 680 nm in red region and causing electron to become excited. These electrons are picked by an electron acceptor which passes to electron transport system consisting of cytochromes.
- 2. Electrons are passed down the electron transport chain and then to the pigment of PS I.
- 3. Electron in the PSI also get excited due to light of wavelength 700nm and are transferred to another accepter molecule having a greater redox potential.
- 4. When electron passes in downhill direction, energy is released. This is used to reduce the ADP to ATP and NADP+ to NADPH. The whole scheme of transfer of electron is called Z-scheme due to its shape.
- 5. Photolysis of water release electrons that provide electron to PS II. Oxygen is also released during this process.


Calvin Cycle/C₃ cycle/Reductive Pentose Sugar Phosphate Pathway

Malvin Calvin, Benson and their colleagues used radioactive 14C and Chlorella and Scenedesmus algae to discover that first CO_2 fixation product is 3-carbon organic compound (3-phosphoglyceric acid) or PGA. Later on a new compound was discovered which contain 4-carbon called Oxaloacetic Acid (AAO). On the basis of number of carbon atoms in first stable product they are named C_3 and C_4 pathway.

Calvin cycle can be described under three stages: carboxylation, reduction and regeneration.

1. Carboxylation is the fixation of into 3-phosphoglyceric acid (3-PGA). Carboxylation of RuBP occurs in presence of enzyme RuBP carboxylase (RuBisCO) which results in the formation of two molecules of 3-PGA.

- 2. Reduction is series of reaction that leads to formation of glucose. Two molecules of ATP and two molecules of NADPH are required for reduction of one molecule of. Six turns of this cycle are required for removal of one molecule of Glucose molecules from pathway.
- 3. Regeneration is the generation of RuBP molecules for the continuation of cycle. This process requires one molecules of ATP.
- 4. For every molecule of entering the Calvin Cycle, 3 molecules of ATP and 2 molecules of NADPH is required. To make one molecules of glucose 6 turns of cycle is completed so total energy molecule required is.

C4 pathway/ Hatch Slack Pathway

- This pathway was worked out by Hatch and Slack (1965, 1967), mainly operational in plants growing in dry tropical region like Maize, Sugarcane, Sorghum etc.
- In this pathway first stable product is a 4-carbon compound Oxaloacetic acid (AAO) so called as C₄ pathway. C₄ plants have Kranz Anatomy (vascular bundles are surrounded by bundle sheath cells arranged in wreath like manner), characterized by large no of chloroplast, thick wall impervious to gases and absence of intercellular spaces.
- The primary CO₂ acceptor is a 3-carbon molecule Phosphoenol Pyruvate present in mesophyll cells and enzyme involved is PEP carboxylase.
- OAA formed in mesophyll cell forms 4-carbon compound like malic acid or aspartic acid which is transported to bundle sheath cells.
- In bundle sheath cell, it is broken into CO2 and a 3-carbon molecule. The

3-carbon molecule is returned back to mesophyll cells to form PEP.

• The CO₂ molecules released in bundle sheath cells enters the Calvin cycle, where enzyme RuBisCO is present that forms sugar.

Photorespiration

- It is a the light dependent process of oxygenation of RuBP and release of carbon dioxide by photosynthetic organs of plants.
- Photorespiration decreases the rate of photosynthesis when oxygen concentration is increased from 2-3% to 21%.
- Presence of light and higher concentration of Oxygen results in the binding of RuBisCO enzyme with O₂ to form.
- RuBisCO + O₂ PGA + phosphoglycolate
- This pathway involves Chloroplast, Peroxisome and Mitochondria. Photorespiration do not occurs in C₄ plants.

Difference between C₃ Plants and C₄ Plants

C ₃ plants	C4 plants
The leaves do not have Kranz anatomy.	The leaves show Kranz anatomy in leaves.
Photorespiration occurs.	Photorespiration does not occur.
RuBisCO is the first acceptor of CO ₂ .	PEP is the first acceptor of CO ₂ .
PGA is the first stable product.	OAA is the first stable product.
Plants are adapted to all climates.	Plants are adapted to tropical climate.
Mesophyll cells perform complete photosynthesis.	Mesophyll cells perform only initial fixation.

Factors affecting photosynthesis

- Light: As light intensity increases, the rate of photosynthesis also increases until light saturation point.
- Carbon dioxide concentration: With increase in concentration of CO₂ rate of photosynthesis increase till the compensation point.
- **Temperature:** It does not influence the rate of photosynthesis directly but at higher temperature enzyme activity is inhibited due to denaturation of enzymes which affect the dark reaction.
- Water: due to increase in amount of water, rate of photosynthesis does not increase proportionally as after saturation no more water is required during photosynthesis.

Blackman's Law of Limiting Factors states

If a chemical process is affected by more than one factor, then its rate will be determined by the factor which is nearest to its minimal value it is the factor which directly affects the process if its quantity is changed.

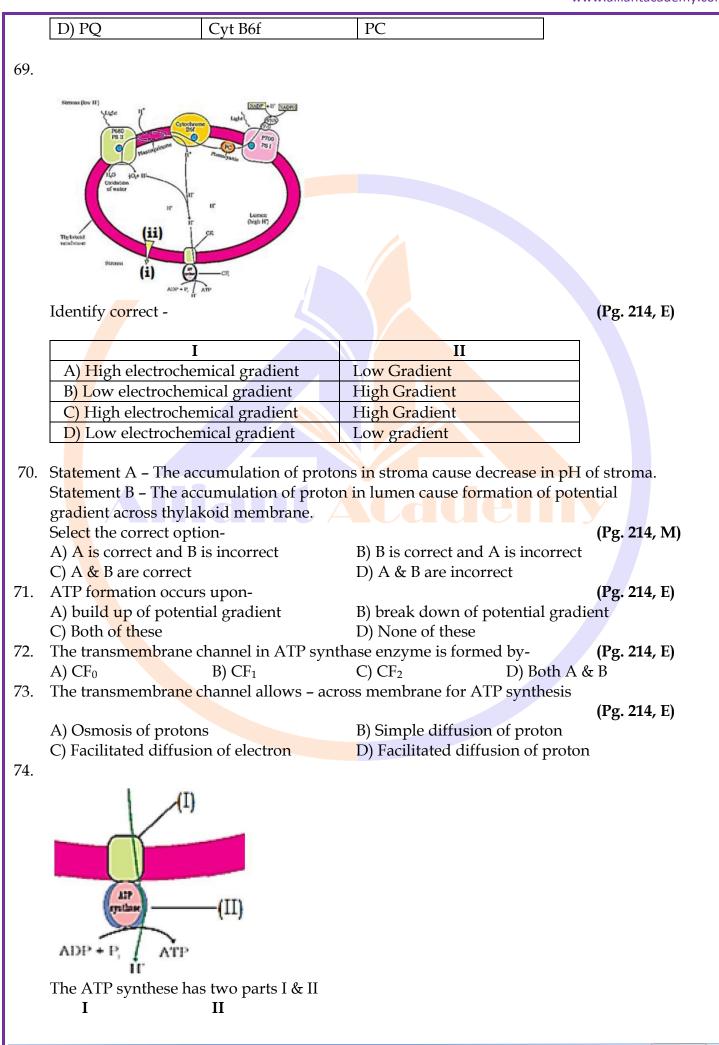
NCERT LINE BY LINE QUESTIONS 13.1 What do we know?

		13.1 Wha	t do we know?	
1.	Chlorophyll is the-			(Pg. 206, E)
	A) Red pigment of leaf of all	l plants	B) Blue pigment of leaf of all	(U
	C) Green pigment of root of	-	D) None of these	1
2.			closed in test tube containing	KOH Soaked Cotton &
	exposed to light will-		(Pg. 207	
	A) Test positive for starch			
	B) Test negative for starch d	ue to inability	to absorb light inside test tube	e
	C) Test negative for starch d	lue to inability	v to absorb CO ₂	
	D) Test negative for starch c	lue to absence	e of <mark>water</mark>	
		<u>13.2 Earl</u>	y Experiments	
3.	Match the experiment object	tive with the s	cien <mark>tist wh</mark> o performed it-	(Pg. 207, H)
	i) Pr <mark>iest</mark> ly	I) Production	n glu <mark>cose in ph</mark> otosynthesis	
	ii) <mark>Juli</mark> us von sachs	II) Role of su	inlig <mark>ht in photo</mark> synthesis	
	iii <mark>) Ja</mark> n ingenhousez		ir in <mark>photosynthesis</mark>	
	(i) (ii) (iii)		(i) (ii) (iii)	_
	(A) <mark>I</mark> III II		(B) II I III	
	(C) II III I		(D) III I II	
4.	Who performed a series of e	experiments th	nat revealed the essential role o	of air on the growth of
	gr <mark>ee</mark> n plants and when?			(Pg. 207, E)
	A) Cornelius van Niel (1787		B) Joseph Priestly (1770)	
	C) <mark>T.</mark> Engelmann (1756)		D) Both A and B	
5.	Who discovered oxygen and	d when?		(Pg. 207, E)
	A) J <mark>ose</mark> ph Priestly (1770)		B) T. Engelmann (1770)	
	C) Ja <mark>n Ing</mark> enhousz (1787)	_	D) Joseph Priestly (1774)	
6.	Who showed that sunlight i	s essential to t	-	(Pg. 207 , E)
	A) T. E <mark>nge</mark> lmann		B) Joseph Priestly	
-	C) Jan Ingenhousz	1	D) Cornelius van trial	
7.	part of the plants that could			(Pg. 207, E)
			B) T. Engelmann	
0	C) Joseph priestly		D) None of these	$(D_{\alpha}, 207, II)$
8.	Match the following		(1) Corpolius yop pol	(Pg. 207, H)
	(A) First action spectrum(B) Chlorophyll		(1) Cornelius van nel (2) T.W Engelmann	
	(C) O ₂ evolve from H2O		(3) Algae	
	(D) <i>Cladophora</i>		(4) Julius von sachs	
			(5) Bacteria	
	A) A-1, B-4, C-1, D-3,5		B) A-3, B-2, C-4, D-1	
	C) A-1, B-3, C-2, D-5		D) A-2, B-4, C-1, D-3	
9.	were used to detec	t the sites of C		(Pg. 207, E)
	A) Bacteria B) Da		C) Fungi D) Viru	
10.	, , , , , , , , , , , , , , , , , , , ,		nonstrate that photosynthesis	
	dependent reaction.		÷ ,	(Pg. 208, E)
	A) Cladophora		B) Purple and green bacteria	(U
	C) Red algae		(D) Both A and B	
11.	from a suitable oxi	idisable comp	ound reduces CO ₂ to Carbohy	drates.
				9

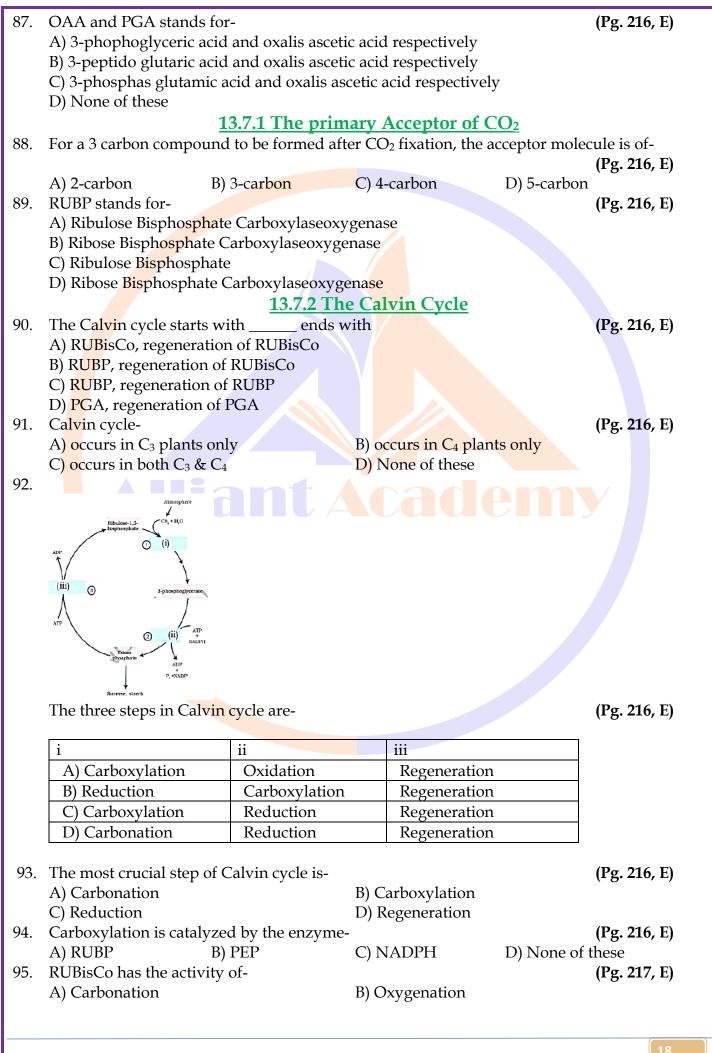
					VVV	
						(Pg. 208, E)
	A) Oxygen	B) Hydroge	en C) Carbon	D) Both A a	and B
12.	Cladophora is-					(Pg. 208, E)
	A) Purple and	green bacteria	B) Green bacteria		
	C) Red algae	5	· · · · · · · · · · · · · · · · · · ·) Green algae		
13.		ed by the green plar		, 0	n carbon diox	ide
		proved by using Ra			curbon alox	(Pg. 208, E)
		is wrong and State				(1 g. 200, L)
	-	0		igin		
	•	ent A and B are wro	0			
		is wrong and State		orrect		
	D) Both Statem	ent A and B are cor				
				<u>osynthesis take</u>	e place?	
L 4 .	-	otosynthesis take p				(Pg. 209, E)
	A) Green part o			<mark>) Gree</mark> n part of ste	m	
	C) Brown part	of stem	D) Both A and B		
l5.	Assertion - Ch	loroplasts usually a	lign thems	e <mark>lves alon</mark> g the wa	alls of mesopl	hyll cells.
	Reaso <mark>n -</mark> They	get optimum quant	tity of incid	ent light by align	ing along wel	1.
	Choose the cor	• • •			0 0	(Pg. 209, M)
		nd Reason are corre	ect and Rea	son is correct exp	lanation for A	Assertion
		nd Reason are corre		-		
	· ·	nd Reason are both				
		s correct but Reasor		rt		
6.	Chloroplast is-	concer but heador				(Pg. 209, E)
0.		brane organelle	B	Double membra	ne organelle	(1 5. 20), L)
		orane organelle) Not an organelle	e e	
7.				· · · · · · · · · · · · · · · · · · ·		(Pg. 209, E)
.7.		orrect statement fro		0		(rg. 209, E)
		clear division of la		-	11	
		has membranous s				
		system is responsib	ole for trap	ping the light ener	rgy	
	· · /	one of the above				
8.	Dark reaction-					(Pg. 209, E)
	A) is not light-o	lependent	B) occurs in darkne	SS	
	C) is photocher	nical reaction	D) is indirectly ligh	t-dependent	
9.						
		- Contractor				
		· · · · · · · · · · · · · · · · · · ·				
		(iv)				
		· · • • · · · · · · · · · · · · · · · ·				
		(ii)				
		(i)				
	Identify correct					(Pg 200 E)
	(i)	(ii)		(iii)	(iv)	(Pg. 209, E)
				· · /	, <i>i</i>	———————————————————————————————————————
	A A Star	1	L	Stroma lamella	Grana	
	$\sigma ran116$	i droniot		Liameila	1	1

(1)	(11)	(111)	(1V)
A Starch	Lipid	Stroma	Grana
granule	droplet	lamella	
Starch	Lipid	Grana	Stroma
granule	droplet		Lamella
Lipid	Starch	Grana	Stroma
droplet	granule		Lamellae
Lipid	Starch	Stroma	Grana
	granule Starch granule Lipid droplet	A StarchLipidgranuledropletStarchLipidgranuledropletLipidStarchdropletStarchdropletgranule	A StarchLipidStromagranuledropletlamellaStarchLipidGranagranuledropletdropletLipidStarchGranadropletgranuleGrana

	droplet	granule	lamella		
•••					
20.	Sugar is synthesized-		P) Non on rum of icoll	•	Pg. 209, E)
	A) Non-enzymatically in §		B) Non-enzymaticall		
21	C) Enzymatically in grana		D) Enzymatically in s		$\mathbf{D}_{\mathbf{\alpha}} = \mathbf{D}(0 + \mathbf{U})$
21.	Which of the following is (()	Pg. 209, E)
	A) Light reaction dependsB) Dark reaction depends				
	C) Both of the above	U	D) None of the above	2	
22.	If a plant is kept in dark fo		D) None of the above		Pg. 209, E)
~~.	A) Starch will be synthesiz			, ,	g. 209, Lj
	B) ATP will be synthesized	-			
	C) NADPH will be synthe	-			
	D) None of these	bized in emotopic			
23.	Choose the incorrect option	n- During daytin	ne-	(I	Pg. 209, E)
	A) ATP will be synthesize			,	g, _,
	B) NADPH will be synthe				
	C) Starch will not be synth	-			
	D) None of these	5			
	,	vpes of pigme	nts are <mark>involved i</mark>	n photosynt	hesis
24.	The colour of leaf is due to				Pg. 210, E)
	A) Chlorophyll only		B) Chlorophyll, carot	,	8, _,
	C) Chlorophyll, carotenoid		D) None of these	5	
25.	Leaf pigments are separate			(1	Pg. 210, E)
	A) Crystallization		B) <mark>Gel electrophore</mark> se		0 . ,
	C) Blotting		D) Paper chromatogi		
26.	Match the pigment with it		/ 1 0		Pg. 210, E)
	Î		II		J ,
	(i) Ch <mark>lor</mark> ophyll a		(A) Blue green		
	(ii) Ch <mark>loro</mark> phyll b		(B) Yellow		
	(iii) Car <mark>oteno</mark> ids		(C) Yellow-green		
	(iv) Xanth <mark>ophy</mark> ll		(D) Yelloworange		
	(i) (ii) (iii) (iv)		(i) (ii) (iii) (iv)		
	A) A C B D		B)ACDB		
	C) A D B C		D) A D C B		
27.	Which is the most abunda			(1	Pg. 210, E)
	A) Chlorophyll a		B) Chlorophyll b		
20	C) Carotenoids		D) xanthophylls		
28.					
1					
	동원 ///-(ii)	N			
	(i)				
	Absorbance of light by chloroplast pigments (ii)				
1					
1	Identity correct			(I	Pg. 210, E)
1	i ii	iii		(-	<u> </u>
1	A Chl a Chi		enoid		
1	B Carotenoids Ch				
1					
1					


			www.amantacaaciny.com
	C Chl b Chl a Car	otenoids	
	D Chl b Carotenoids Chl	a	
29.	Maximum absorption by chlorophyll a o	ccors in-	(Pg. 210, E)
	A) blue & green region	B) ned & green region	
	C) blue & red region	D) yellow & red region	
30.	Assertion - Chlorophyll 'a' is the chief pi	gment associated with photosynt	hesis Reason –
	Chlorophyll maximum absorption coinci	des with maximum photosynthes	is.
	Choose correct option –	-	(Pg. 210, M)
	A) Assertion & Reason are correct & Reas	son is correct explanation of Asser	rtion
	B) Assertion & Reason are correct but Re	ason is not correct explanation of	Assertion
	C) Assertion is correct & Reason is incorr	rect.	
	D) Assertion & Reason are incorrect.		
31.	Accessory pigments include		(Pg. 210, E)
	A) Chlorophyll a	B <mark>) Chlo</mark> rophyll b	
	C) both of these	D) None of these	
32.	Accessory pigments		(Pg. 210, E)
	A) Pass on the energy to chl 'a'		
	B) pass on the energy to primary accepto	r	
	C) Use energy for photolysis of water		
	D) more than one option		
33.	Advantages of accessory pigments includ	le	(Pg. <mark>21</mark> 0, E)
	A) they help by photolyzing the water		
	B) they protect chl 'a' from photooxidation	on	
	C) they enable narrower range of wavele	ngth of incoming light to be used	for photosynthesis
	D) both a & b		
	<u>13.5 What</u>	is light Reaction?	
34.	Lig <mark>ht R</mark> eaction is also Known as-		(Pg. 211, E)
	A) p <mark>hot</mark> ochemical phase	B) biosynthetic phase	
	C) bo <mark>th o</mark> f these	D) None of these	
35.	Choose correct order of events in light re		(Pg. 211, E)
	i) ATP & NADPH formation	ii) Water Splitting	
	iii) Oxygen release	iv) Light absorption	
	A) III IV II I B) IV III I III	C) IV II III I D) II III IV	
36.	LHC stands for-		(Pg. 211, E)
	A) Late Harvesting Complex	B) Light Harvesting Complex	
	C) Light Hanging Complex	D) Late Hanging Complex	()
37.	0		(Pg. 211, E)
	A) their discovery order	B) their functioning sequence	
• •	C) the scientist who named it	D) the components of the photo	
38.	Which of the following is correct?		(Pg. 211, E)
	A) PS I is called P800	B) PS II is called P680	
20	C) Both a & b	D) None of these	
39.	Reaction Centre is formed by-		(Pg. 211, E)
	A) Only one chlorophyll 'a' molecule		
	B) A few chlorophyll 'a' molecule		
	C) One chlorophyll 'a' and a few accessor	-	
40	D) A few chlorophyll 'a' and a few access	ory pigments.	$(\mathbf{D}_{\mathbf{z}}, \mathbf{O}_{1}, \mathbf{T})$
40.	Choose the incorrect statements-		(Pg. 211, E)
	A) Antennae is a light harvesting system		
	B) Contains accessory pigments		

	C) Does not include reaction centre	
	D) None of these	
	13.6 The Electron Transport	
41.	When the light energy is absorbed by PSII, it is-	(Pg. 211, E)
	A) Converted to mechanical energy	
	B) Used to excite electrons	
	C) Used to change configuration of RUBisCO	
	D) Both a & c	
42.	The movement of excited electrons in Noncyclic Photophosphorylation:	(Pg. 211, E)
	A) uphill in terms of reduction potential scale	
	B) downhill in terms of reduction potential scale	
	C) uphill and downhill in terms of oxidation-reduction potential scale	
	D) both A and C	
43.	The electrons excited form PS II-	(Pg. 211, E)
	A) get used up by the first electron acceptor.	(- 8, -,
	B) get used up in the middle of its ETS pathway to PS I	
	C) get passed on to pigments of PS I	
	D) get partially used up in ETS and the rest is passed to PS I.	
44.	The electrons passed on by PS I to electron acceptor are-	(Pg. 212, E)
	A) the ones that were transferred to PS I from PS II	(1 8, 11-) 2)
	B) electrons from the water splatted.	
	C) electrons excited when PS I absorbs light.	
	D) All of these	
45.	Electrons from PS-I move downhill to a molecule of energy-rich-	(Pg. 212, E)
10.	A) NADP+ B) NAD+ C) FAD+ D) GTP	(19. 112, 2)
46.	The Z scheme is named so because-	(Pg. 212, E)
10.	A) it was discovered by a scientist with 'Z' as initial letter of name	(1 8, 11-) 2)
	B) the carriers of ETS present in thylakoid membrane are in 'Z' shape.	
	C) it forms 'Z' shape when the carriers of ETS are arranged in sequence on	redox
	potential scale.	icuox
	D) both A & C	
47.	by bourna e	
17.		
	Photosystem II Photosystem I	
	(iii)	
	Light catterior	
	(1) Electron	
	transport system	
	LHC	
	LHC	
	(ii)	
	Identify the correct site for	(Pg. 212, E)
	I- water splitting, II-NADP+ reduction, IIIATP synthesis	(- 0 , , -)
	I II III III	
	A) I II III B) II I III	
	C) III II D) III I II	
	<u>13.6.1 Splitting of Water</u>	
48.	Splitting of water is important-	(Pg. 212, E)
ч0.	opining of water is important-	(1 8. 212, 1)

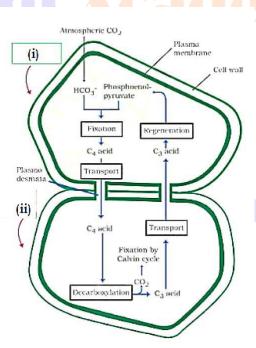

 B) for the electrons released C) for the hydroxide ions released D) for the hydroxide ions released D) for the hydroxide ions released A) PS II located on inner side of thylakoid membrane C) PS I located on outer stroma lamellae D) PS II located on outer stroma lamellae membrane C) PS I located on outer stroma lamellae membrane D) PS II located on outer stroma lamellae membrane O. The O₂ is released in- (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid C) Stroma D) Cytoplasm 13.6.2 Cyclic & Non-Cycle Photophosphorylation C) Prosphosynthesis in cells i/are- A) Poto-phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Both A & B 27. The process of ATP synthesis in cells i/are- A) Poto-phosphorylation B) Oxidative phosphorylation C) Any of these depending upon location D) None of these 38. The order of working of the two photosystems is- (Pg. 213, E) A) PS1 C) Any of these depending upon location D) None of these C) None-(cyclic photophosphorylation involves- (Pg. 213, E) A) ATP B) Clucose C) NADH + H + D) Both A & C 59. Cyclic photophosphorylation novleves- (Pg. 213, E) A) ATP B) Clucose C) NADH + H + D) Both A & C 50. Cyclic photophosphorylation novleves- (Pg. 213, E) A) ATP B) Clucose C) NADH + H + D) Both A & C 50. Cyclic photophosphorylation novleves- (Pg. 213, E) A) ATP B) Clucose C) NADH + H + D) Both A & C 51. C) Any DPI + H + only D) Some of these (Pg. 213, E) A) AST only		A) for the O_2 formation		
 D) for the H₂ released Water splitting is associated with- (Pg. 212, E) A) PS II located on inner side of thylakoid membrane D) PS II located on outer stroma lamellae membrane C) PS I located on outer stroma lamellae membrane D) PS II located on outer stroma lamellae membrane The O₂ is released in- (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid C) Stroma D) Cytoplasm (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid C) Stroma D) Cytoplasm (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid C) Stroma D) Cytoplasm (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid C) Stroma D) Cytoplasm (Pg. 213, E) A) Photo-phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Both A & B The order of working of the two photosystems is- (Pg. 213, E) A) PS I → PS II B) C) Any of these depending upon location D) None of these Vany of these depending upon location D) None of these A) ATP B) Clucose C) NADH + H+ D) Both A & C C) Goth PS I & PS II D) None of these A) ATP B) Clucose C) NADH + H+ D) Both A & C C) Cyclic photophosphorylation involves- (Pg. 213, E) A) ATP B) Clucose C) NADH + H+ D) Both A & C C) Cyclic photophosphorylation ends in formation of- (Pg. 213, E) A) ATP B) Clucose conly C) NADPH + H+ only D) Both A & C S. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) A) ATP only B) Standamellae (Pg. 213, E) A) Stroma B) Stroma lamellae (Pg. 213, E) A) Stroma B) Stroma lamellae (Pg. 213, E) A) Stroma B) Stroma lamellae (Pg. 213, E) A) Stroma B) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct and Reason i		B) for the electrons released		
49. Water splitting is associated with- (Pg. 212, E) A) PS I located on inner side of thylakoid membrane B) PS II located on outer stroma lamellae D) PS II located on outer stroma lamellae D) PS II located on outer stroma lamellae D) PS II located on outer stroma lamellae Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid C) Stroma D) Cytoplasm 51. Protons are released- A) Lumen of thylakoid B) Outer side of thylakoid C) Stroma D) Cytoplasm 52. The process of ATP synthesis in cells is/arc- (Pg. 212, E) A) Photo-phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Dotto A & B 53. The order of working of the two photosystems is- (Pg. 213, E) A) PS I - PS II B) PS II - PSI (Pg. 213, E) A) PS I - PS II D) None of these (Pg. 213, E) 4) PS I only B) Clucose C) NADH + H+ D) Both A & C Cyclic photophosphorylation involves- (Pg. 213, E) (Pg. 213, E) A) PS I only B) Clucose only (Pg. 213, E) A) ATP B) Glucose only (Pg. 213, E) </td <td></td> <td>· •</td> <td>ased</td> <td></td>		· •	ased	
A) PS I located on inner side of thylakoid membrane B) PS II located on outer stroma lamellae D) Cytoplasm IS. Protons are released- A) Lumen of thylakoid C) Stroma IS. 6.2 Cyclic & Non-Cycle Photophosphorylation C) Phosphosynthesis in cells is/are- (Pg. 212, E) A) Photo-phosphorylation C) Phosphosynthesis D) Both A & B The order of working of the two photosystems is- (Pg. 213, E) A) PS I C) Any of these depending upon location D) None of these A) PS I C) Both PS I & PS II C) Both PS I & PS II D) None of the these, only enzymes in stroma S. End product of Z-scheme is- A) PS I only C) Both PS I & PS II D) None of these F. A) PS I only C) Both PS I & PS II D) None of these S. Cyclic photophosphorylation involves- A) PS I only C) Soth PS I & PS II D) None of these S. Cyclic photophosphorylation ends in formation of- A) ATP only D) Both A & C S. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for Assertion C) Assertion is correct but Reason is not correct explanation for Assertion C) Assertion is cheasen are wrong D) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Re		·		
B) PS II located on inner side of thylakoid membrane C) PS I located on Outer stroma lamellae D) PS II located on outer stroma lamellae membrane 50. The O ₂ is released in- A) Lumen of thylakoid C) Stroma END of thylakoid C) Stroma B) Outer side of thylakoid C) Stroma C) Phosphorylation B) Outer side of thylakoid C) Stroma C) Phosphorylation B) Oxidative phosphorylation C) Phosphorylation D) None of these depending upon location D) None of these 54. Non-cyclic photo-phosphorylation involves- A) PS I C) Both PS I & PS II C) Soth PS I & PS II C) Both PS I & PS II C) Both PS I & PS II C) Soth PS I & PS II C) NADPH + H+ only D) Both A & C S. A possible location of explic photophosphorylation under full light is condition. A) Stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (P ₂ 213, M) A) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Asse	49.	- 0		(Pg. 212, E)
C) PS I located on Outer stroma lamellae D) PS II located on outer stroma lamellae membrane D) PS II located on outer stroma lamellae membrane S0. The O2 is released in (Pg. 212, E) A) Lumen of thylakoid D) Cytoplasm Frotons are released (Pg. 212, E) A) Lumen of thylakoid D) Cytoplasm 13.6.2 Cyclic & Non-Cycle Photophosphorylation C) Stroma D) Cytoplasm 13.6.2 Cyclic & Non-Cycle Photophosphorylation C) Phosphorylation B) Oxidative phosphorylation C) Phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Both A & B S1. The order of working of the two photosystems is- (Pg. 213, E) A) Pfoto-phosphorylation B) PS II \rightarrow PSI C) Any of these depending upon location D) None of these 54. Non-cyclic photo-phosphorylation involves- (Pg. 213, E) A) PSI C) Both PS I & PS II C) Both PS I & PS II D) None of these 55. End product of Z-scheme is- (Pg. 213, E) A) AlP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- (Pg. 213, E) A) AlP B) Clucose C) NADH + H+ D) Both A & C 57. Cyclic photophosphorylation involves- (Pg. 213, E) A) AlP B) Glucose only C) NADPH + H+ only D) None of these 57. Cyclic photophosphorylation ends in formation of- A) AIP B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma Reason - Stroma membrane lacks I'S II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct expl		•	•	
D) PS II located on outer stroma lamellae membrane (Pg, 212, E) A) Lumen of thylakoid C) Stroma D) Cytoplasm Protons are released- A) Lumen of thylakoid C) Stroma 13.6.2 Cyclic & Non-Cycle Photophosphorylation C) Stroma D) Cytoplasm 13.6.2 Cyclic & Non-Cycle Photophosphorylation C) Stroma D) Cytoplasm (Pg, 212, E) A) Lumen of thylakoid D) Soluter side of thylakoid C) Stroma D) Cytoplasm (Pg, 212, E) A) Photo-phosphorylation D) Notative phosphorylation C) Phosphosynthesis D) Both A & B C) Any of these depending upon location D) None of these (Pg, 213, E) A) PS I C) Any of these depending upon location D) None of these (Pg, 213, E) A) PS I C) Both PS I & PS II C) Both PS I & PS II D) None of these S: A) PS I only C) Cyclic photophosphorylation involves- A) PS I only C) NADPH + H+ only D) Both A & C S: A possible location of cyclic photophosphorylation ucer full light is condition. A) Stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A A B) Both Assertion & Reason are correct but Reason is not correct explanation for A A B) Both Assertion & Reason are correct but Reason is not correct explanation for A A B) Both Assertion & Reason are correct but Reason is not correct explanation for A A B) Both Assertion & Reason are correct but Reason is not correct explanation for A A B) Bot				
50. The O_2 is released in- (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid (Pg. 212, E) A) Lumen of thylakoid B) Outer side of thylakoid (Pg. 213, E) A) Prosto-sphorylation B) Doth A & B (Pg. 213, E) A) PS I \rightarrow PS II B) PS II \rightarrow PS I (Pg. 213, E) A) ATP B) Glucose C) NADH + H \rightarrow D) Both A & C (Pg. 213, E) A) ATP B) Glucose C) NADH + H \rightarrow D) Both A & C (Pg. 213, E) A) ATP B) Glucose C) NADH $+$ H \rightarrow D) Both A & C (Pg. 213, E) A) PS I only B) BY II only (Pg. 213, E) (Pg. 213, E) A) ATP B) Glucose only (Pg. 213, E) (Pg. 213, E)				
A) Lumen of thylakoid B) Outer side of thylakoid C) Stroma D) Cytoplasm (Pg, 212, E) A) Lumen of thylakoid D) Cytoplasm (Pg, 212, E) A) Lumen of thylakoid D) Cytoplasm (Pg, 212, E) A) Photo-phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Both A & B 53. The order of working of the two photosystems is- A) PS1 \rightarrow PS1 \rightarrow PS1 (Pg, 213, E) A) PS1 \rightarrow PS1 \rightarrow PS1 \rightarrow PS1 (Pg, 213, E) A) PS1 \rightarrow PS1 \rightarrow PS1 \rightarrow PS1 (Pg, 213, E) A) PS1 \rightarrow PS1 \rightarrow D) None of these 54. Non-cyclic photo-phosphorylation involves- A) PS1 \rightarrow PS1 \rightarrow D) None of the these, only enzymes in stroma 55. End product of Z-scheme is- (Pg, 213, E) D) None of the these, only enzymes in stroma 55. End product of Z-scheme is- (Pg, 213, E) A) ATP B) Clucose C) NADH + H+ D) Both \land & C 56. Cyclic photophosphorylation involves- A) PS1 \rightarrow DS1 \rightarrow D) None of these 57. Cyclic photophosphorylation ends in formation of- A) ATP B) Clucose C) NADH + H+ D) Both \land & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg, 213, E) A) ATP only B) Clucose D) Outer membrane of chloroplast. 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg, 213, E) C) Cristale D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation cocurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer. (Pg, 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for			na lamellae membrane	
C) Stroma D) Cytoplasm (Pg. 212, E) A) Lumen of thylakoid D) Cytoplasm (Pg. 212, E) A) Lumen of thylakoid D) Cytoplasm (Pg. 212, E) A) Lore side of thylakoid D) Cytoplasm (Pg. 212, E) A) Photo-phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Both A & B 53. The order of working of the two photosystems is- A) P5 I → P5 II B B) (Pg. 213, E) A) P5 I → P5 II B B) P5 II → P5I (Pg. 213, E) A) P5 I → P5 II B B) P5 II B) P5 II (Pg. 213, E) A) P5 I A P5 II B) (Pg. 213, E) A) P5 I A P5 II B) (Pg. 213, E) A) P5 I A P5 II B) (Pg. 213, E) A) P5 I A P5 II B) (Pg. 213, E) A) P5 I A P5 II B) (Pg. 213, E) A) ATP B) Glucose C) NADH + H+ D) Both A & C 54. Non-cyclic photophosphorylation involves- A) P5 I only B) Glucose C) NADH + H+ D) Both A & C 55. Cyclic photophosphorylation involves- A) P5 I only B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- A) P5 I only B) Glucose OI NADH + H+ D) Both A & C 57. Cyclic photophosphorylation ends in formation of- A) ATP B) Glucose OI NADH + H+ D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma B) Stroma lamellae (Pg. 213, E) A) ATP only B) Glucose OI Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks P5 II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A Assertion C) Assertion is correct but Reason are wrong D) Both Assertion & Reason are wrong B) Both	50.			(Pg. 212, E)
51.Protons are released- A) Lumen of thylakoid C) Stroma(Pg. 212, E) B) Outer side of thylakoid D) Cytoplasm13.6.2Cyclic & Non-Cycle Photophosphorylation D) Cytoplasm(Pg. 212, E) PSI52.The process of ATP synthesis in cells is/are- A) Photo-phosphorylation C) Phosphosynthesis B) Oxidative phosphorylation C) Phosphosynthesis D) Both Λ & B(Pg. 213, E) C) A) PS I \rightarrow PS I C) Any of these depending upon location D) None of these(Pg. 213, E) C) Any of these depending upon location D) None of these(Pg. 213, E) C) Any of these depending upon location D) None of these(Pg. 213, E) C) A) PS I C) Both PS I & PS II C) Both PS I & PS II C) Both PS I & PS II D) None of the these, only enzymes in stroma End product of Z-scheme is- A) PS I C) Both PS I & PS II D) None of the these, only enzymes in stroma (Pg. 213, E) A) ATP B) Glucose C) NADH + H+ D) Both A & C(Pg. 213, E) (Pg. 213, E) A) PS I only C) Both PS I & PS II D) None of these(Pg. 213, E) (Pg. 213, E) A) PS I only C) Both PS I & PS II D) None of these(Pg. 213, E) (Pg. 213, E) A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C58.A possible location of cyclic photophosphorylation under full light is condition. A) Stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion & Reason are correct but Reason				
A) Lumen of thylakoidB) Outer side of thylakoidC) StromaD) Cytoplasm13.6.2 Cyclic & Non-Cycle Photophosphorylation52. The process of ATP synthesis in cells is/are- (A) Photo-phosphorylationB) Oxidative phosphorylationC) PhosphosynthesisD) Both A & B53. The order of working of the two photosystems is- (C) Phosphosynthesis(Pg. 213, E)A) P5 1 \rightarrow P5 IIB) P5 II \rightarrow P5 IC) Any of these depending upon locationD) None of these54. Non-cyclic photo-phosphorylation involves- (A) P5 1(Pg. 213, E)C) Both P5 I & P5 IID) None of the these, only enzymes in stroma55. End product of Z-scheme is- (A) P5 I only(Pg. 213, E)A) ATPB) Glucose(Pg. 213, E)A) ATPB) Glucose(Pg. 213, E)A) ATPB) Glucose only(Pg. 213, E)A) P5 I onlyB) STI only(Pg. 213, E)C) Both P5 I & P5 IID) None of these(Pg. 213, E)A) ATPB) Glucose only(Pg. 213, E)A) ATP onlyB) Glucose only(Pg. 213, E)A) StromaB) Stroma lamellae(Pg. 213, E)A) StromaB) Stroma lamellae(Pg. 213, E)A) StromaB) Stroma lamellae(Pg. 213, E)A) Stroma membrane lacks P5 II and NADP reductase. Choose correct answer- (Pg. 213, M)A) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A A B) Both Assertion & Reason are correct but Reason is not correct explanation for A A B) Both Assertion & Reason are		,	D) <mark>Cyt</mark> oplasm	
C) Stroma D) Cytoplasm 13.6.2 Cyclic & Non-Cycle Photophosphorylation S2. The process of ATP synthesis in cells is/are- A) Photo-phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Both A & B S3. The order of working of the two photosystems is- A) PS I \rightarrow PS II B) PS II \rightarrow PSI C) Any of these depending upon location D) None of these S4. Non-cyclic photo-phosphorylation involves- A) PS I \rightarrow PS II D) None of the these, only enzymes in stroma D) None of these S5. End product of Z-scheme is- (Pg. 213, E) A) ATP B) Clucose C) NADH + H+ D) Both A & C S6. Cyclic photophosphorylation involves- A) PS I D) None of these S5. End product of Z-scheme is- (Pg. 213, E) A) ATP B) Clucose C) NADH + H+ D) Both A & C S6. Cyclic photophosphorylation involves- A) PS I Only B) PS II Only C) Both PS I & PS II D) None of these S7. Cyclic phosphorylation ends in formation of- (Pg. 213, E) A) ATP Only B) Glucose only C) NADPH + H+ only D) Both A & C S6. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. S9. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not co	51.	Protons are released-		(Pg. 212, E)
13.6.2 Cyclic & Non-Cycle Photophosphorylation52. The process of ATP synthesis in cells is/are- A) Photo-phosphorylation C) Phosphosynthesis D) Both A & B(Pg. 212, E)53. The order of working of the two photosystems is- A) PS I \rightarrow PS I(Pg. 213, E)A) PS I \rightarrow PS IB) PS II \rightarrow PSI(Pg. 213, E)C) Any of these depending upon location D) None of theseB) PS II \rightarrow PSIC) Any of these depending upon location D) None of theseB) PS II \rightarrow PSIC) Any of these depending upon location D) None of theseD) None of the these, only enzymes in stroma55. End product of Z-scheme is- (Pg. 213, E) A) ATP B) Glucose(Pg. 213, E)A) ATPB) GlucoseC) NADH + H+ D) Both A & C56. Cyclic photophosphorylation involves- (Pg. 213, E) A) ATPB) ClucoseC) Soth PS I & PS II O) None of theseD) None of these57. Cyclic photophosphorylation ends in formation of- A) ATP only(Pg. 213, E)A) ATP onlyB) Glucose only C) NADPH + H+ onlyD) Both A & C58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are wrong60. ATP Synthesis is linked to _i graduate across a membrane in _ii_ (Pg. 213, E)		A) Lumen <mark>of</mark> thylakoid	B <mark>) Oute</mark> r side of thylakoid	
52. The process of ATP synthesis in cells is/are- A) Photo-phosphorylation B) Oxidative phosphorylation (Pg. 212, E) A) Photo-phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Both A & B 53. The order of working of the two photosystems is- A) $PS I \rightarrow PS II$ B) $PS II \rightarrow PSI$ (Pg. 213, E) A) Mon-cyclic photo-phosphorylation involves- A) $PS I$ B) $PS II \rightarrow PSI$ (Pg. 213, E) A) ATP B) Glucose C) NADH + H+ D) Both A & C 55. End product of Z-scheme is- A) ATP B) Glucose C) NADH + H+ D) Both A & C 64. Order of bosphorylation involves- A) PS I only B) PS II only (Pg. 213, E) A) ATP B) Glucose C) NADH + H+ D) Both A & C 57. Cyclic photophosphorylation ends in formation of- A) ATP only B) Glucose only (Pg. 213, E) A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correc		C) Stroma	D) <mark>Cyto</mark> plasm	
A) Photo-phosphorylation B) Oxidative phosphorylation C) Phosphosynthesis D) Both A & B 53. The order of working of the two photosystems is- A) PS I \rightarrow PS II B) PS II \rightarrow PS II C) Any of these depending upon location D) None of these 54. Non-cyclic photo-phosphorylation involves- A) PS I B) C II B) PS II B) P		<u>13.6.2 Cycli</u>	c & Non-Cycle Photophosphorylation	
C) Phosphosynthesis D) Both A & B 53. The order of working of the two photosystems is- A) PS I \rightarrow PS II C) Any of these depending upon location D) None of these 54. Non-cyclic photo-phosphorylation involves- A) PS I C) Both PS I & PS II C) Both PS I & PS II C) Both PS I & PS II C) Both PS I & PS II D) None of the these, only enzymes in stroma (Pg. 213, E) A) ATP B) Glucose C) NADH + H+ D) Both A & C 55. End product of Z-scheme is- A) ATP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- A) PS I only C) Both PS I & PS II D) None of these 57. Cyclic photophorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are wrong D) Both Assert	52.	The process of ATP synthesis	in cells is/are-	(Pg. 212, E)
53. The order of working of the two photosystems is- A) PS I → PS II(Pg. 213, E) B) PS II → PSIC) Any of these depending upon location D) None of theseB) PS II → PSI54. Non-cyclic photo-phosphorylation involves- A) PS IB) PS IIC) Both PS I & PS IID) None of the these, only enzymes in stroma55. End product of Z-scheme is- A) ATP(Pg. 213, E) B) Glucose64. Optic Photophosphorylation involves- A) PS I(Pg. 213, E) (Pg. 213, E)75. End product of Z-scheme is- A) ATP(Pg. 213, E) B) Glucose76. Cyclic photophosphorylation involves- A) PS I only(Pg. 213, E) (Pg. 213, E)77. Cyclic photophosphorylation ends in formation of- A) ATP onlyB) PS II only B) Glucose only C) NADPH + H+ only78. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma and B) Stroma lamellae (Pg. 213, E)79. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are orrect but Reason is not correct explanation for A B) Both Assertion & Reason are wrong I 3.6.3 Chemiosmotic Hypothesis60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E)			B) Oxidative phosphorylation	
A) PS I → PS IIB) PS II → PSIC) Any of these depending upon locationD) None of these54. Non-cyclic photo-phosphorylation involves- A) PS I(Pg. 213, E)C) Both PS I & PS IID) None of the these, only enzymes in stroma55. End product of Z-scheme is- A) ATP(Pg. 213, E)A) ATPB) GlucoseC) NADH + H+D) None of the these, only enzymes in stroma56. Cyclic photophosphorylation involves- A) PS I only C) Both PS I & PS IID) None of these57. Cyclic photophosphorylation ends in formation of- A) ATP only C) NADPH + H+ onlyB) Glucose only D) Both A & C58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae(Pg. 213, E)c) CristateD) Outer membrane of chloroplast.59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are wrong(Pg. 213, E)60. ATP Synthesis is linked to _i_graduate across a membrane in _ii_ (Pg. 213, E)(Pg. 213, E)		C) Phosphosynthesis	D) Both A & B	
 C) Any of these depending upon location D) None of these 54. Non-cyclic photo-phosphorylation involves- A) PS I C) Both PS I & PS II D) None of the these, only enzymes in stroma 55. End product of Z-scheme is- A) ATP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- A) PS I only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP B) Glucose only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct but Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 	53.	Th <mark>e o</mark> rder of working of the t	wo photosystem <mark>s is-</mark>	(Pg. 213, E)
 D) None of these 54. Non-cyclic photo-phosphorylation involves- A) PS I C) Both PS I & PS II D) None of the these, only enzymes in stroma 55. End product of Z-scheme is- A) ATP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- A) PS I only B) PS II only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are wrong D) Both Assertion & Reason are wrong 		A) $PS I \rightarrow PS II$	B) PS II \rightarrow PSI	
 54. Non-cyclic photo-phosphorylation involves- A) PS I C) Both PS I & PS II D) None of the these, only enzymes in stroma 55. End product of Z-scheme is- (Pg. 213, E) A) ATP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- A) PS I only B) PS II only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are wrong D) Both Assertion & Reason are wrong 		C) Any of these depending up	oon location	
 A) PS I B) PS II C) Both PS I & PS II D) None of the these, only enzymes in stroma End product of Z-scheme is- A) ATP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- A) PS I only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are wrong D) Both Assertion & Reason are wrong 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 		D <mark>) N</mark> one of these		
C) Both PS I & PS II D) None of the these, only enzymes in stroma 55. End product of Z-scheme is- (Pg. 213, E) A) ATP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- (Pg. 213, E) A) PS I only B) PS II only (Pg. 213, E) A) PS I only B) PS II only (Pg. 213, E) A) PS I only B) PS II only (Pg. 213, E) A) ATP only B) Glucose only (Pg. 213, E) A) ATP only B) Glucose only (Pg. 213, E) C) NADPH + H+ only D) Both A & C (Pg. 213, E) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. (Pg. 213, E) Stroma B) Stroma amembrane lacks PS II and NADP reductase. (Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is not correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis </td <td>54.</td> <td>Non-cyclic photo-phosphoryl</td> <td>ation involves-</td> <td>(Pg. 213, E)</td>	54.	Non-cyclic photo-phosphoryl	ation involves-	(Pg. 213, E)
 55. End product of Z-scheme is- A) ATP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- A) PS I only B) PS II only (Pg. 213, E) A) PS I only B) PS II only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_graduate across a membrane in _ii_ (Pg. 213, E) 		A) PS I		
 A) ATP B) Glucose C) NADH + H+ D) Both A & C 56. Cyclic photophosphorylation involves- A) PS I only B) PS II only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A B) Both Assertion & Reason are wrong D) Both Assertion & Re		C) Both PS I & PS II	D) None of the these, only enzyn	nes in stroma
 56. Cyclic photophosphorylation involves- A) PS I only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for A Assertion is correct but Reason is not correct explanation for A Assertion & Reason are wrong D) Both Assertion & Reason are wrong (Pg. 213, E) 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 	55.	End product of Z-scheme is-		(Pg. 213, E)
 A) PS I only B) PS II only C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason are wrong D) Both Assertion & Reason are wrong C) Assertion & Reason are wrong (Pg. 213, E) 		A) ATP B) Glu	cose C) NADH + H+ D) Both A &	z C
 C) Both PS I & PS II D) None of these 57. Cyclic phosphorylation ends in formation of- A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason are wrong D) Both Assertion & Reason are wrong C) ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 	56.			(Pg. 213, E)
 57. Cyclic phosphorylation ends in formation of- A) ATP only A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E)		,	B) PS II only	
 A) ATP only B) Glucose only C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 		· ·	,	
 C) NADPH + H+ only D) Both A & C 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 	57.			(Pg. 213, E)
 58. A possible location of cyclic photophosphorylation under full light is condition. A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion – Cyclic photophosphorylation occurs in stroma Reason – Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 		A) ATP only	B) Glucose only	
 A) Stroma B) Stroma lamellae (Pg. 213, E) C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E)		,	,	
 C) Cristate D) Outer membrane of chloroplast. 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 	58.			ion.
 59. Assertion - Cyclic photophosphorylation occurs in stroma Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong <u>13.6.3 Chemiosmotic Hypothesis</u> 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 		,		
 Reason - Stroma membrane lacks PS II and NADP reductase. Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 		C) Cristate	D) Outer membrane of chloropla	st.
 Choose correct answer- (Pg. 213, M) A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 	59.			
 A) Both Assertion & Reason are correct and Reason is correct explanation for A B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 				
 B) Both Assertion & Reason are correct but Reason is not correct explanation for Assertion C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 				
 C) Assertion is correct but Reason is wrong D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 				
 D) Both Assertion & Reason are wrong 13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E) 		B) Both Assertion & Reason a	re correct but Reason is not correct explanation	for Assertion
13.6.3 Chemiosmotic Hypothesis 60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E)		C) Assertion is correct but Re	ason is wrong	
60. ATP Synthesis is linked to _i_ graduate across a membrane in _ii_ (Pg. 213, E)			0	
		<u>13.</u>	6.3 Chemiosmotic Hypothesis	
(i) (ii)	60.	ATP Synthesis is linked to _i_	_graduate across a membrane in _ii_	(Pg. 213, E)
		(i)	(ii)]

(i)	(ii)
A) Electron	Photosynthesis & respiration
B) Electron	Photosynthesis only

	C) Proton	Photosynth	esis and respiration	7
	D) Proton	, i i i i i i i i i i i i i i i i i i i	esis but not respiration	-
	2)110001	11000091101		
61.	Which of the following state	ements is true?		(Pg. 213, E)
011			side of membrane in photosynthe	,
			side (lumen) of thylakoid in respi	
			side of membrane of respiration	
	D) None of these			ing faile fa
62.	The proton gradient may be	formed in pho	otosynthesis due to-	(Pg. 213, E)
0	A) Splitting of water	formed in priv	B) Reduction of NAD+	(18, 10, 2)
	C) Both A and B		D) None of these	
63.		rough photos	ystems, protons are transported a	cross membrane
05.	Reason – Primary acceptor			(Pg. 213, M)
			d <mark>Reason</mark> is explanation of Asser	
			d Reason is not the explanation for	
	C) Assertion is correct but F		-	51 7135CI (1011
	D) Assertion & Reason both		, iteet	
64.	Which of these is an H carri			(Pg. 213, E)
04.	A) PS II		B) Ferredoxin	(1 g. 213, L)
	C) Plastocyanin		D) Plastoquinone	
65.	NADP reductase enzyme is	located on		$(P_{cr} 214 E)$
05.	-			(Pg. 214, E)
	A) Stroma side (outer side)	(of	B) Lumen side (I,e. outer side)	
66	C) Stroma Side (i.e. inner sid	•	D) Lumen side (i.e. inner side)	$(\mathbf{D}_{\mathbf{\alpha}},\mathbf{O}_{1}1,\mathbf{\Gamma})$
66.	The proton gradient is also	formed due to-		(Pg. 214, E)
	A) reduction of NAD+		B) reduction of NADP+	
(7	C) reduction of both NAD+		D) reduction of FAD+	(D - 214 M)
67.	0			(Pg. 214, M)
	A) ATP & NADPH + H+ bo			
	B) ATP & NADPH + H+ bo		-	
			+ H+ is formed towards stroma.	
(0	D) NADPH + H+ formed ir	lumen while A	A I P is formed in stroma.	
68.	, Stroma (low 11)			
	Submitted in	NADP'+11' NADPH		
	P680 P5 II			
		P700 PS I		
	11,0 10,+ II- Oxidation			
	of water			
	High Electrochemical	Lumen (high H)		
	Thylakoid Gradient			
	membrane			
	Stroma Low man			
	ADP + P, ATP			
				(D - 014)
1	Identify correct labels-			(Pg. 214, E)
			(:::)	
	(i) (ii)			
	A) PQ PC		Cyt B6f	
1	B) Cyt B6f PQ		PC	
	C) PC Cyt F	6t	PC	
1				

	(A) CF_0 CF_1			
	(B) CF_1 CF_0			
	(C) CF CF_0			
	(D) None			
75.	CF ₀ is –			(Pg. 214, E)
	A) embedded in chloroplast membrane			
	B) protruding on outer surface of chloropl	ast		
	C) protruding on inner surface of chloroph			
	D) None of these			
76.	CF1 is-			(Pg. 215, E)
	A) embedded in chloroplast membrane			
	B) protruding on outer surface of chloropl	ast membrane		
	C) protruding on inner surface of chloropl			
	D) None of these			
77.	Conformational change in makes AT	Р		(Pg. 215, E)
	A) CF_0 B) CF_1	C) Both	D) None	(- 8,, -)
78.	For creating proton gradient across thylak		,	(Pg. 215, E)
10.	A) Energy is used	B) No energy is use		(19. =10, 1)
	C) Energy is released	D) None of these	a	
79.	Th <mark>e end products of light reaction are-</mark>	D) None of these		(Pg. 215, E)
1).	A) Stored till dark reaction takes place at r	ight		(1 5. 213, 1)
	B) immediately used up in next round of 1			
	C) transferred to the stroma from lumen to		etic reaction	occurring in stroma
	D) None of these	be used in biosynth	encreaction	occurring in subina
		ATD and MADDI	I mond?	
00	13.7 Where are the	AIT allu NADIT	i useu:	$(D_{2}, 015, E)$
80.	The products of light reaction are-			(Pg. 215, E)
	A) ATP only	B) ATP & NADPH		
01	C) ATP, NADPH, O ₂	D) NADPH Only		(D~ 01E E)
81.	O_2 is-			(Pg. 215, E)
	A) used up in dark reaction in stroma	laid		
	B) used up in dark reaction in lumen thyla	ikolu		
	C) diffused out of chloroplast			
on	D) more than one option is correct	an and ant of direct or	accuracy of light	b.t
82.	Statement A – Biosynthetic reaction is inde			
	Statement B – Biosynthetic process continu	ues for some time are	-	
	and then stops. (A) Both A is Born connect		(Pg. 215, E)	
	A) Both A & B are correct		b) A is cori	rect and B is
	incorrect	D) A & D area ire again	in al	
02	C) A is incorrect and B is correct	D) A & B are in corr	rect	(De
83.	Calvin discovered that first CO_2 fixation p	roduct 1s-		(Pg.
	215, E)		\mathbf{D} $(1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	1
	A) 3-carbon organic acid		,	n organic acid
0.4	C) 5- carbon organic acid	0.1.1.1.1		n organic acid
84.	To discover the first CO_2 fixation product,	Calvin worked on-u	•	(Pg. 215, E)
	A) algae, radioactive C_{12}			dioactive C_{12}
0-	C) algae, radioactive C_{14}			adioactive C_{14}
85.	The first product of CO_2 fixation was iden			(Pg. 215, E)
01	A) PGA B) RUBP	C) Citric acid	D) OAA	
86.	In C ₄ pathway, first CO ₂ fixation product i			(Pg. 215, E)
	A) PGA B) RUBP	C) Citric acid	D) OAA	

	C) Oxidation		D) None of th	ese	
96.	Reduction involves U	Jse of			ction
70.	Reduction involves ((Pg. 217, E)
	A) 1	B) 2	C) 3	D) 4	(18. =17, 1)
07	•	,	/	,	(D _a)17 E)
97.	Reduction involves u				(Pg. 217, E)
00	A) 1	B) 2	C) 3	D) 4	10
98.	For formation of 1 gl	ucose molecule,	how may turns of C	alvin cycle is need	
					(Pg. 217, E)
	A) 3	B) 1	C) 2	D) 6	
99.	Regeneration of(i)	<u>takes place at</u>	t expense of(ii)	ATP &(iii) NA	ADPH.
					(Pg. 217, E)
	(i)	(ii)	(iii)		
	A) RUBP	0	1		
	B) RUBP	1	0		
	C) RUBisCo	0	1		
			0		
	D) RUBisCo		0		
100					
100.	Statement A – In CO	-			
	Sta <mark>tem</mark> ent B – to mee	et the difference	in numbe <mark>r of A</mark> TP &	NADPH used in c	lark reaction, cyclic
	ph <mark>os</mark> phorylation take	e place.			
	Choose the correct of	ption-			(Pg. <mark>217</mark> , M)
	A) A is correct but B	is wrong	B) B is correct	but A is wrong	
	CA & B are correct	0			
101.	Fo <mark>r f</mark> ormation of 1 gl				cvcle?
			AUUU		(Pg. 217, E)
	A) 12	B) 16	C) 18	D) 10	(1 8. =1/) -2)
102	For one glucose form	/	/	/	thway?
102.	Por one gracose form		ly INTED molecules al	te needed by C3 pa	
	A) 10	D) 1 0	C) 1(D) 10	(Pg. 217, E)
	A) 10	B) 12	C) 16	D) 18	
			<u>8 The C4 Pathway</u>	Ľ	
103.	C ₄ plants are adaptat	tion of plants to-			(Pg. 218, E)
	A) wet regions (heav	y rainfall)	B) polar regio	ns	
	C) dry tropics		D) moist rainf	forest	
104.	(i) – C ₄ plants lack Ca	alvin cycle			
	(ii) – C_4 plants lack p				
	(iii) – C_4 plants have	-	ity than C3 plants		
	(iv) – C_4 plants canno	-	-		
	How many of the ab	•	-	8 M)	
	•				
105	$ \begin{array}{c} A \end{pmatrix} 0 \\ F & A \end{array} $	B) 1	C) 2	D) 3	(D - 01 0 F)
105.	First CO ₂ fixation pro				(Pg. 218, E)
	A) RBP	B) PEP	C) OAA	D) Malate	/
106.	Bundle sheath cells a	-			(Pg. 218, E)
	A) C_4 plants, vascula	r bundles	B) C ₃ plants, v	vascular bundles	
	C) Both of these		D) None of th	ese	
107.	Leaves with bundle s	sheath cells are s	said to show-		(Pg. 218, E)
	A) Krant anatomy		B) Kranz anat	omy	
	C) Kent anatomy		D) Krez anato		
108	Bundle sheath cells-		- / 1 a c2 vi i i i i	J	(Pg. 218, E)
100.	A) Allow gaseous ex	change	B) Have inter	cellular spaces	(- 5, -10, 1)
	rij mow gaseous ex	change	b) Have milely	cinular spaces	

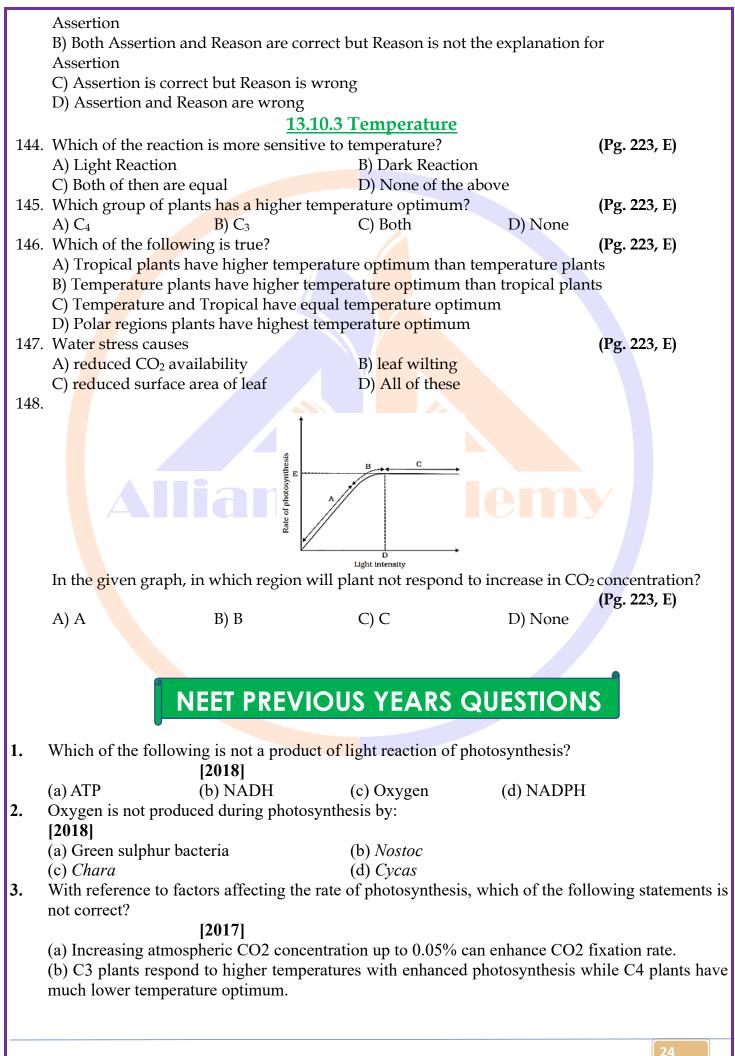

		w.unantacaacin
C) Have large number of chloroplast	s D) All of these	
109. Example of C4 plants is-	,	(Pg. 218, E)
A) Rice B) Maize	C) Soyabean D) Both A a	
110. Primary CO_2 acceptor in C_4 plants is-	· •	(Pg. 218, E)
A) 3-carbon molecule RUBP	B) 3-carbon molecule PEP	
C) 4-carbon molecule PEP	D) 4-carbon molecule OAA	
111. Enzyme responsible for primary CO_2		(Pg. 218, E)
A) RUBisCO B) PEPCase	C) Oxaloacetase D) Phenola	
112. Which of the following is true?		(Pg. 218, E)
A) C ₄ plants lack RUBisCO		-
B) Mesophyll cells of C ₄ plants lack R	RUBisCO	
C) Bundle sheath cells of C ₄ plants la	ck RUBisCO	
D) C ₃ plants lack RUBisCO		
113. Primary CO_2 fixation occurs in C_4 pla	ants in	(Pg. 218, E)
A) Bundle sheath cells	B) Mesophyll cells	
C) Any <mark>of</mark> the above	D) None of these	
114. CO_2 fixation in C ₄ plants occurs in-		(Pg. 218, E)
A) B <mark>un</mark> dle sheath cells	B) <mark>Mesophyll cell</mark> s	
C) <mark>Bot</mark> h A and B	D) None of the above	
115. OAA forms other four carbon acids v	which are transported. They are-	(Pg. 218, E)
A) Malic acid and oxalic acid	B) Malic acid and aspartic acid	
C) <mark>Su</mark> ccinic acid and aspartic acid	D) Succinic acid and glutamic ac	
116. T <mark>he f</mark> igure shows		(Pg. 219, E)
Atmospheric CO ₂ Plasma membrane		
Cell wall	Academ	
HCO3 ⁻ Phyprophenet		
Fixation C, acid C, acid C, acid		
Plasmo deamata		
C ₄ acid Transport		
Flaation by Calvin cycle		
$\xrightarrow{CP_2} c_3 \text{ acid}$		
A) Krebs cycle	B) Calvin cycle	
C) Hatch and Slack pathway	D) EMP pathway	
117. In C_4 pathway, RUBisCO is-	_)	(Pg. 219, E)
A) absent	B) present in mesophyll cells	
C) present in bundle sheath cell	D) none of these	
118. PEPcase enzyme is-	,	(Pg. 219, E)
A) absent in mesophyll cells	B) present in bundle sheath cells	
C) both A and B	D) None of these	
119. Calvin cycle takes place in(i) in a		(Pg. 219, E)
(i)	(ii)	

(i)	(ii)
(A) mesophyll cells	Mesophyll cells
(B) bundle sheath cells	Mesophyll cells
(C) mesophyll cells	Bundle sheath cells
(D) bundle sheath cells	Bundle sheath cells

(Pg. 219, E)

ec du Burnd sheat cell (Cell wall HCO ₃ * Phosphoenal- pyruvate (iii) C ₄ acid C ₃ acid C ₃ acid C ₄ acid Fixation by Calvin cycle Column	(Pg. 219, E)
	(ii)	(iii)
A) Firation	Decarboxylation	Regeneration
B) Transport	Firation	Regeneration
C) Regeneration	Transport	Fixation
D) Regeneration	Decarboxylation	<u>Fixation</u>

121. Identify the A and B



(i)	(ii)
A) mesophyll cells	mesophyll cells
B) bundle sheath cells	mesophyll cells
C) mesophyll cells	Bundle sheath cells
, 15	
D) bundle sheath cells	Bundle sheath cells

13.9 Photorespiration

122.	Read the following statements-		
	Statement A – Ribulose Bisphosphate is th	e most abundant enzyme in the w	orld.
	Statement B – Photorespiration doesn't occ	-	
	Choose the correct option-	I	(Pg. 220, E)
	A) A is correct and B is incorrect	B) B is correct and A is incorrect	(-8,-)
	C) A and B are correct	D) A and B are incorrect	
123	RUBisCO has when $CO_2 \& O_2$ is		(Pg. 220, E)
120.	A) greater affinity for CO_2 than O_2	B) greater affinity for O_2 than CO	
	C) equal affinity for $CO_2 \& O_2$	D) no affinity for O_2	2
124	In C_3 plants-		(Pg. 220, E)
	A) Some O_2 binds to RUBisCO and CO_2 fix	xation increases	(18, ==0, 2)
	B) no O_2 binds to RUBisCO		
	C) Some O_2 binds to RUBisCO and CO_2 fix	vation decrases	
	D) only O_2 binds to RUBisCO		
125	When O_2 binds to RUBisCO, RUBP is conv	verted to and	(Pg. 220, E)
120.	A) Phosphoglycerate, phosphoenolpyruva		(1 g. ==0, 1)
	B) Phosphoglycerate, phosphoglycerate		
	C) Phosphoenolpyruvate, phosphoglycerate	te	
	D) Phosphoglycolate, phosphoglycerate		
126	In photorespiration-		(Pg. 220, E)
120.	A) Sugar and ATP are formed		(1 8. 220, 2)
	B) Sugar is formed but not ATP		
	C) ATP is formed but not sugar		
	D) Sugar and ATP are not formed		
127	Assertion – Photorespiration doesn't occur	r in C ₄ plants	
127.	Reason – CO_2 concentration at enzyme sit	—	
	Chose correct option-	e is high in C4 plants.	(Pg. 220, E)
	A) Both Assertion and Reason are correct a	and Reason is correct explanation t	
	Assertion		
	B) Assertion is correct and Reason is wron	σ	
	C) Assertion is wrong and Reason is corre-	0	
	D) Both Assertion and Reason are wrong		
		ecting Photosynthesis	
128	Photosynthesis is dependent on-	eeting 1 notosynthesis	(Pg. 222, E)
120.	A) internal factors of plant		(I g. 222, L)
	-		
	B) external factors of environment C) both A and B		
	D) None of these		
120	How many of the following are factors aff	acting photosynthesis?	(Pg. 222, E)
129.	age of leaves, orientation of leaf, internal C		
	number of leaves	202 concentration, amount of child	opnyn,
	A) 4 B) 2	C) 3 D) 5	
130	. Blackman's which law comes into effect v	, , , , , , , , , , , , , , , , , , , ,	hemical process?
150	. Diackinan's which have comes into chect v	viteri se verar ractors arecet arry bioc	(Pg. 222, E)
	A) Law of Limited Components (1910)		(+ 5 , , -)
	B) Law of Limited Components (1910) B) Law of Limiting Factors (1910)		
	C) Law of Limited Components (1905)		
	D) Law of Limiting Factors (1905)		
	2) Law of Emitting Factors (1700)		

131. According to Black	mann's Law, the rat	e of chemical process	is determined	•
factor which				(Pg. 222, E)
A) is nearest to its r				
B) is nearest to its n	ninimum value			
C) both A and B		D) none of these		
		<u>13.10.1 Light</u>		
132. The relationship be	tween incident ligh	t and CO_2 fixation rat	e at higher ligh	
				(Pg. 222, E)
A) rate is constant \mathbf{v}	0	5		
B) rate increases wi	0	-		
C) rate decreases w	ith increasing inten	sity		
D) none of these				
133. At lower Light inte				(Pg. 222, E)
A) is constant with				
B) increasing with i	0 0	2		
C) decreases with in	ncreasing light inter	nsity		
D) none of these	and at af	full qualizat		$(\mathbf{D}_{\alpha}, \mathbf{D}_{2}, \mathbf{D}_{1})$
134. Light saturation oc	B) 10%	5	D) 40%	(Pg. 222, E)
A) 5%		C) 20%	D) 40 %	(Pg. 222, E)
135. Ve <mark>ry</mark> big increase ir A) increase in phot		565-		(1 g. 222, E)
B) decrease in phot	-			
C) no change in phot				
D) none of these	Stosynthesis fate			
D) none of these	13 10 2 Carbo	on dioxide concent	ration	
136. Which of the follow		in aloxide concent		(P_{α}) (P _a)
		notosynthesis in natur	0	(Pg. 223, E)
		hotosynthesis in natu		
C) Both of these	finding factor for p	D) None of these		
137. The concentration of	of CO ₂ beyond whic			onger periods is-
				(Pg. 223, E)
A) 0.03%	B) 0.04%	C) 0.05%	D) 0.08%	
138. The CO ₂ fixation ra	,	/	,	(Pg. 223, E)
A) 300 ppm	B) 400 ppm	C) 500 ppm	D) 800 pp1	
139. At low light condit	· · · ·	ý 11		
Ũ				(Pg. 223, E)
A) C ₃	B) C ₄	C) Both	D) None	
140. At high light condi	tions, which of the	groups respond positi	vely to increase	e in CO ₂ .
				(Pg. 223, E)
A) CO ₂	B) C ₄	C) Both	D) None	
141. C_4 plants show satu		entration of-		(Pg. 223, E)
Α) 240 μlL-1	B) 360 μlL-1	C) 450 <i>µlL</i> -1	D) 540 µlL	-1
142. C_3 plants show satu				(Pg. 223, E)
A) 450 μ <i>T</i> L-1	B) 360 μ <i>l</i> L-1	C) 540 µiL-1	D) 240 µlL	
143. Assertion - Greenh	—	atoes and bell pepper	are grown in (CO ₂ enriched
atmosphere for hig	2		_	
-	respond to higher (CO ₂ concentration by s	showing increa	sed rate of
photosynthesis.				(B)
Choose the correct	-		, . .	(Pg. 223, E)
A) Both Assertion a	nd Keason are corr	ect and Reason is corr	ect explanation	n tor

	www.amantac	ademy.com				
	(c) Tomato is a greenhouse crop which can be grown in CO2 - enriched atmosphere yield.	for higher				
	(d) Light saturation for CO2 fixation occurs at 10% of full sunlight.					
4.	In a chloroplast, the highest number of protons are found in:					
	[2016]					
	(a) Stroma (b) Lumen of thylakoids					
	(c) Inter membrane space (d) Antennae complex					
5.	Water soluble pigments found in plant cell vacuoles are					
	[2016]					
	(a) Xanthophylls (b) Chlorophylls (c) Carotenoids (d) Anthocyanins					
6.	Emerson's enhancement effect and Red drop have been instrumental in the disc	covery of				
	[2016]					
	(a) photophosphorylation and non-cyclic electron transport.					
	(b) two photosystems operating simultaneously.					
	(c) photophosphorylation and cyclic electron transport.					
	(d) oxidative phosphorylation.					
7.	A plant in your garden avoids photorespiratory losses, has improved water use efficien	-				
	high rates of photosynthesis at high temperatures and has improved efficiency of	nıtrogen				
	utilisation. In which of the following physiological groups would you assign this plant?					
0	(a) C3 (b) C4 (c) CAM (d) Nitrogen fixer					
8.	Chromatophores take part in:					
	(a) Growth (b) Movement (c) Regnitation (d) Photographesis					
9.	(a) Growth (b) Movement (c) Respiration (d) Photosynthesis The structures that are formed by stacking of organized flattened membranous sa	os in the				
9.	chloroplasts are :					
	[2015]					
	(a) Grana (b) Stroma lamellae (c) Stroma (d) Cristae					
10.	The oxygen evolved during photosynthesis comes from water molecules. Which o	ne of the				
10.	following pairs of elements is involved in this reaction?					
	[2015]					
	(a) Manganese and Potassium (b) Magnesium and Molybdenum					
	(c) Magnesium and Chlorine (d) Manganese and Chlorine					
11.	In photosynthesis the light-independent reactions take place at					
	[2015]					
	(a) Photosystem-I (b) Photosystem-II (c) Stromal matrix (d) Thylakoid lumen					
12.	Cytochromes are found in :					
	[2015]					
	(a) Outer wall of mitochondria (b) Cristae of mitochondria					
	(c) Lysosomes (d) Matrix of mitochondria					
13.	Anoxygenic photosynthesis is characteristic of :					
	[2014]					
	(a) <i>Rhodospirillum</i> (b) <i>Spirogyra</i> (c) <i>Chlamydomonas</i> (d) <i>Ulva</i>	ODYGG				
14.	In Hatch and Slack pathway, the primary CO ₂ acceptor is - [NEET-2019 (1) Oracle and in (2) Physical acceptor is - (4) Parline (2)					
15.	(1) Oxaloacetic acid (2) Phosphoglyceric acid (3) Phosphoenol pyruvate (4) RubisCo					
13.	One scientist cultured Cladophora in a suspension of Azotobacter and illuminated the culture by splitting light through a prism. He observed that bacteria accumulated mainly in the region of:					
	spinning right through a prism. The observed that bacteria accumulated manny in the region of. [NEET-2019	ODISSA				
	(1) Violet and green light (2) Indigo and green light					
	(3) Orange and yellow light (4) Blue and red light					
		25				

 1) 1 molecule of 4-C compound and 1 molecule of 2-C compound 2) 2 molecules of 3-C compound 3) 1 molecules of 3-C compound 4) 1 molecule of 6-C compound 20. The first stable product of CO₂ fixation in sorghum is: [NEET-2021] 1) Oxaloacetic acid 2) Succinic acid 3) Phosphoglyceric acid 4) Pyruvic acid 	16.		at PS II, what i E T-2020
 COVIDJ RublisCO is a bifunctional enzyme In Ca plants, the site of RuBlisCO activity is mesophyll cell The substrate molecule for RuBlisCO activity is a 5-carbon compound RuBlisCO action requires AIP and NADPH In light reaction, plastoquinone facilitates the transfer of electrons from [NEET-2020] PS-I to ATP synthase 2) PS-II to Cytbef complex Cytbef complex to PS-I 4) PS-I to NADP The oxygenation activity of RuBlisCO enzyme in photorespiration leads to the formation of [NEET-2020] I) molecules of 3-C compound and 1 molecule of 2-C compound 2) 2 molecules of 3-C compound 3) 1 molecules of 3-C compound 4) 1 molecule of 2-C compound 4) 1 molecule of 4-C compound 4) 1 molecules of 3-C compound 4) 1 molecules of 3-C compound 4) 1 molecules of 3-C compound 4) 1 molecules 3) 0 System and BE II 4) 80 MADPH 4 H are synthesized during non-cyclic photophosphorylation involves bub PS I and PS II 4) 80 MADPH 4 H are syn	17	(1) Oxygen (2) Water (3) Carbon dioxide (4) Light	TT 2020
 (1) RuBisCO is a bifunctional enzyme (2) In C₄ plants, the site of RuBisCO activity is mesophyll cell (3) The substrate molecule for RuBisCO activity is a 5-carbon compound (4) RuBisCO action requires ATP and NADPH In light reaction, plastoquinone facilitates the transfer of electrons from [NEET-2020] (1) PS-I to ATP synthase (2) PS-II to Cythaf complex (3) Cythaf complex to PS-I (4) PS-II to NADP (7) The oxygenation activity of RuBisCO enzyme in photorespiration leads to the formation of [NEET-2020] (1) In biccules of 3-C compound and 1 molecule of 2-C compound 2) 2 molecules of 3-C compound 3) I molecules of 3-C compound and 1 molecule of 2-C compound and 1 molecule of 4-C compound and 1 molecules of 2-C compound 3) I molecules of 3-C compound 1 provide activity is incorrect? (NEET-2021] (1) Oxaloacetic acid 2) Succinic acid 3) Phosphoglyceric acid 4) Pyruvic acid (2) Grana lamellae have both PS I and PS II (2) Cyclic photophorphylation involves both PS I and PS II (2) Cyclic photophorphylation involves both PS I and PS II (2) Cyclic photophorphylation involves both PS I and PS II (2) Grana lamellae have both PS I and PS II and PS II (2) Cyclic photophorphylation involves both PS I and PS II (3) Movement of protons across the membrane to the stroma (4) Reduction of NADPH to MADPH, on the stroma side of the membrane (2) Production of Courber tais increased manifold in recent years. Application of which of the following bitytohormones has resulted in this increased yield as the hormone is known to produce female flowers in the plants: (1) ABA 2) Gibberellin 3) Ethylene 4) Cytokinin (24. Given below are two statements: (35. Statement I: (36. The primary CO, acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells. (36. Statement I and Statement II are cor		•	1-2020
1) PS-1 to ATP synthase2) PS-II to Cythof complex3) Cythof complex to PS-14) PS-1 to NADP19. The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of [NEET-2020]11. molecules of 3-C compound al 1 molecule of 2-C compound 2) 1 molecules of 3-C compound3) 1 molecules of 3-C compound 1 2) Succinic acid 3) Phosphoglyceric acid 4) Pyruvice acid11. Oxaloacetic acid 2) Succinic acid 3) Phosphoglyceric acid 4) Pyruvice acid12. Which of the following statements is incorrect?13. Stroma lamellae have both PS 1 and PS II3) Cyclic photophosphorylation involves both PS 1 and PS II3) Cyclic photophosphorylation in ot true regarding the release of energy during ATP synthesis through chemiosmosis? It involves:1) Breakdown of proton gradient2) Breakdown of proton gradient3) Movement of protons across the membrane to the stroma4) Reduction of NADP to NADPH a on the stroma side of the membrane23. Production of Cucumber has increased manifold in recent years. Application of which of the following phytohormones has resulted in this increased yield as the hormone is known to produce female flowers in the plants:1) ABA2) Gibberellin24. Given below are two statements:25. Statement I:26. Mesophyll cells of C_4 plants lack RuBisCo enzyme11 the light of the above statement II are correct3) Statement I and statement II are correct3) Statement I and statement II are correct3) Statement I is incorrect but Statement II is incorrect3) Statement I is incorrect but Statement II is correct3) Statement I is incorrect but Statement II is correct <th></th> <th> (1) RuBisCO is a bifunctional enzyme (2) In C₄ plants, the site of RuBisCO activity is mesophyll cell (3) The substrate molecule for RuBisCO activity is a 5-carbon compound (4) RuBisCO action requires ATP and NADPH </th> <th></th>		 (1) RuBisCO is a bifunctional enzyme (2) In C₄ plants, the site of RuBisCO activity is mesophyll cell (3) The substrate molecule for RuBisCO activity is a 5-carbon compound (4) RuBisCO action requires ATP and NADPH 	
 3) Cytb₀f complex to PS-1 4) PS-1 to NAPP 19. The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of [NEET-2020] 1) Inolecules of 3-C compound and 1 molecule of 2-C compound 2) 2 molecules of 3-C compound 3) Inolecules of 3-C compound and 1 molecule of 2-C compound 2) 1 molecules of 3-C compound 20. The first stable product of CO₂ fixation in sorghum is: [NEET-2021] 1) Oxaloacetic acid 2) Succinic acid 3) Phosphoglyceric acid 4) Pyruvic acid 21. Which of the following statements is incorrect? [NEET-2021] 21. Which of the following statements is incorrect? [NEET-2021] 22. Which one of the following in not true regarding the release of energy during ATP synthesis through chemiosmosis? It involves: 23. Breakdown of proton gradient 24. Breakdown of protons across the membrane to the stroma 44. Reduction of NADP to <i>NADPH</i>, on the stroma side of the membrane 23. Production of Cucumber has increased manifold in recent years. Application of which of the following phytohormones has resulted in this increased yield as the hormone is known to produce female flowers in the plants: 24. Given below are two statements: 25. Statement 1: 26. The primary CO₂ acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells. 27. Statement 1 and Statement II are correct 28. Bothe Statement I and Statement II are correct 29. Bothe Statement I and Statement II are correct 20. Bothe Statement I and Statement II is incorrect 31. Statement I is correct but Statement II are incorrect 32. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? 31. The primary CO₂ acceptor in C₄ plants for the operation of Calvin cycle 32. Statement I is incorrect but Statement II are incorrect 33. Statement I is correct but Statement	18.	In light reaction, plastoquinone facilitates the transfer of electrons from	[NEET-2020
 1) Oxaloacetic acid 2) Succinic acid 3) Phosphoglyceric acid 4) Pyruvic acid [NEET-2021] 21. Which of the following statements is incorrect? [NEET-2021] 1) Stroma lamellae have PS I only and lack NADP reductase. 2) Grana lamellae have PS I only and lack NADP reductase. 2) Grana lamellae have PS I only and lack NADP reductase. 2) Grana lamellae have PS I only and lack NADP reductase. 2) Grana lamellae have PS I only and lack NADP reductase. 3) Cyclic photophosphorylation involves both PS I and PS II 4) Both ATP and NADPH +H⁺ are synthesized during non-cyclic photophosphorylation 22. Which one of the following in not true regarding the release of energy during ATP synthesis through chemiosmosis? It involves: 1) Breakdown of proton gradient 2) Breakdown of proton gradient 3) Movement of protons across the membrane to the stroma 4) Reduction of NADP to <i>NADPH</i>₂ on the stroma side of the membrane 23. Production of Cucumber has increased manifold in recent years. Application of which of the following phytohormones has resulted in this increased yield as the hormone is known to produce female flowers in the plants: 1) ABA 2) Gibberellin 3) Ethylene 4) Cytokinin 24. Given below are two statements: Statement I: The primary CO₂ acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells. Statement I and statement II are correct 2) Bothe Statement I and Statement II are incorrect 4) Statement I is incorrect but Statement II is incorrect 4) Statement I is incorrect but Statement II is incorrect 4) Statement I is incorrect but Statement II is correct 25. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? 1) To provide the site for photorespiratory pathway 2) To increase the number of chloroplast for the operation of Calvin cycle 3) To enable the plant to tolerate high temperature 4) To protect the vascular tissue from high light intensity 	19.	3) Cytb ₆ f complex to PS-I4) PS-I to NADPThe oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of1) 1 molecule of 4-C compound and 1 molecule of 2-C compound2) 2 molecules of 3-3) 1 molecules of 3-C compound4) 1 molecule of 6-C	C compound C compound
 21. Which of the following statements is incorrect? (NEET-2021) (1) Stroma lamellae have by I only and lack NADP reductase. (2) Grana lamellae have both PS I and PS II (3) Cyclic photophosphorylation involves both PS I and PS II (4) Both ATP and NADPH + H⁺ are synthesized during non-cyclic photophosphorylation (2) Which one of the following in not true regarding the release of energy during ATP synthesis through chemiosmosis? It involves: (1) Breakdown of proton gradient (2) Breakdown of proton gradient (2) Breakdown of poton gradient (3) Movement of protons across the membrane to the stroma (4) Reduction of NADP to <i>NADPH</i>₂ on the stroma side of the membrane 23. Production of Cucumber has increased manifold in recent years. Application of which of the following phytohormones has resulted in this increased yield as the hormone is known to produce female flowers in the plants: (1) ABA (2) Gibberellin (3) Ethylene (4) Cytokinin 24. Given below are two statements: (3) Statement I: (4) Mesophyll cells of C₄ plants lack RuBisCo enzyme (7) In the light of the above statements, choose the correct answer from the options given below. (1) Bothe Statement I and Statement II are correct (2) Bothe Statement I is incorrect but Statement II is incorrect (3) Statement I is incorrect but Statement II is correct (4) Statement I is incorrect but Statement II is correct (2) What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? (1) To provide the site for photorespiratory pathway (2) To increase the number of chloroplast for the operation of Calvin cycle (3) To onable the plant to tolerate high temperature (4) To protect the vascular tissue from high light intensity 	20.		•
 synthesis through chemiosmosis? It involves: 1) Breakdown of proton gradient 2) Breakdown of electron gradient 3) Movement of protons across the membrane to the stroma 4) Reduction of NADP to NADPH₂ on the stroma side of the membrane 23. Production of Cucumber has increased manifold in recent years. Application of which of the following phytohormones has resulted in this increased yield as the hormone is known to produce female flowers in the plants: ABA Given below are two statements: Statement I: The primary CO₂ acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells. Statement II: Mesophyll cells of C₄ plants lack RuBisCo enzyme In the light of the above statement II are correct Bothe Statement I and Statement II are incorrect Statement I is incorrect but Statement II is correct 25. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? To provide the site for photorespiratory pathway To increase the number of chloroplast for the operation of Calvin cycle To protect the vascular tissue from high light intensity 	21.	 Which of the following statements is incorrect? 1) Stroma lamellae have PS I only and lack NADP reductase. 2) Grana lamellae have both PS I and PS II 3) Cyclic photophosphorylation involves both PS I and PS II 	
 following phytohormones has resulted in this increased yield as the hormone is known to produce female flowers in the plants: ABA Given below are two statements: Statement I: The primary CO₂ acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells. Statement II: Mesophyll cells of C₄ plants lack RuBisCo enzyme In the light of the above statement II are correct Bothe statement I and statement II are incorrect Statement I is correct but Statement II is incorrect Statement I is incorrect but Statement II is correct 25. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? To provide the site for photorespiratory pathway To increase the number of chloroplast for the operation of Calvin cycle To protect the vascular tissue from high light intensity 	22.	 synthesis through chemiosmosis? It involves: 1) Breakdown of proton gradient 2) Breakdown of electron gradient 3) Movement of protons across the membrane to the stroma 	Ρ
 Statement I: The primary CO₂ acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells. Statement II: Mesophyll cells of C₄ plants lack RuBisCo enzyme In the light of the above statements, choose the correct answer from the options given below. 1) Bothe statement I and statement II are correct 2) Bothe Statement I and Statement II are incorrect 3) Statement I is incorrect but Statement II is incorrect 4) Statement I is incorrect but Statement II is correct 25. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? 1) To provide the site for photorespiratory pathway 2) To increase the number of chloroplast for the operation of Calvin cycle 3) To enable the plant to tolerate high temperature 4) To protect the vascular tissue from high light intensity 		following phytohormones has resulted in this increased yield as the hormone is kproduce female flowers in the plants:1) ABA2) Gibberellin3) Ethylene4) Cytokinin	
 The primary CO₂ acceptor in C₄ plants is phosphoenolpyruvate and is found in the mesophyll cells. Statement II: Mesophyll cells of C₄ plants lack RuBisCo enzyme In the light of the above statements, choose the correct answer from the options given below. 1) Bothe statement I and statement II are correct 2) Bothe Statement I and Statement II are incorrect 3) Statement I is correct but Statement II is incorrect 4) Statement I is incorrect but Statement II is correct 25. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? 1) To provide the site for photorespiratory pathway 2) To increase the number of chloroplast for the operation of Calvin cycle 3) To enable the plant to tolerate high temperature 4) To protect the vascular tissue from high light intensity 	24.		
 cells. Statement II: Mesophyll cells of C₄ plants lack RuBisCo enzyme In the light of the above statements, choose the correct answer from the options given below. 1) Bothe statement I and statement II are correct 2) Bothe Statement I and Statement II are incorrect 3) Statement I is correct but Statement II is incorrect 4) Statement I is incorrect but Statement II is correct 25. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? 1) To provide the site for photorespiratory pathway 2) To increase the number of chloroplast for the operation of Calvin cycle 3) To enable the plant to tolerate high temperature 4) To protect the vascular tissue from high light intensity 			he mesonhull
 Statement II: Mesophyll cells of C₄ plants lack RuBisCo enzyme In the light of the above statements, choose the correct answer from the options given below. 1) Bothe statement I and statement II are correct 2) Bothe Statement I and Statement II are incorrect 3) Statement I is correct but Statement II is incorrect 4) Statement I is incorrect but Statement II is correct 25. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? 1) To provide the site for photorespiratory pathway 2) To increase the number of chloroplast for the operation of Calvin cycle 3) To enable the plant to tolerate high temperature 4) To protect the vascular tissue from high light intensity 			ne mesophyll
 In the light of the above statements, choose the correct answer from the options given below. 1) Bothe statement I and statement II are correct 2) Bothe Statement I and Statement II are incorrect 3) Statement I is correct but Statement II is incorrect 4) Statement I is incorrect but Statement II is correct 25. What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? 1) To provide the site for photorespiratory pathway 2) To increase the number of chloroplast for the operation of Calvin cycle 3) To enable the plant to tolerate high temperature 4) To protect the vascular tissue from high light intensity 			
 Bothe statement I and statement II are correct Bothe Statement I and Statement II are incorrect Statement I is correct but Statement II is incorrect Statement I is incorrect but Statement II is correct What is the role of large bundle sheath cells found around the vascular bundles in C₄ plants? To provide the site for photorespiratory pathway To increase the number of chloroplast for the operation of Calvin cycle To protect the vascular tissue from high light intensity 		Mesophyll cells of C_4 plants lack RuBisCo enzyme	
 To provide the site for photorespiratory pathway To increase the number of chloroplast for the operation of Calvin cycle To enable the plant to tolerate high temperature To protect the vascular tissue from high light intensity 		 Bothe statement I and statement II are correct Bothe Statement I and Statement II are incorrect Statement I is correct but Statement II is incorrect Statement I is incorrect but Statement II is correct 	
 2) To increase the number of chloroplast for the operation of Calvin cycle 3) To enable the plant to tolerate high temperature 4) To protect the vascular tissue from high light intensity 	25.		C_4 plants?
26		2) To increase the number of chloroplast for the operation of Calvin cycle3) To enable the plant to tolerate high temperature	
			26

NCERT LINE BY LINE QUESTIONS – ANSWERS									
1 2 3 4 5 6 7 8 9 10									
D	C	D	В	D	C	A	D	A	В
11	12	13	14	15	16	17	18	19	20
B	D	D	D	A	B	A	D	C	D
21	22	23	24	25	26	27	28	29	30
В	D	С	С	D	В	А	D	С	А
31	32	33	34	35	36	37	38	39	40
В	А	В	А	С	В	А	В	А	D
41	42	43	44	45	46	47	48	49	50
В	С	С	С	А	С	D	В	В	А
D	С	D	В	D	С	А	D	А	В
51	52	53	54	55	56	57	58	59	60
С	D	В	С	D	А	А	В	В	С
61	62	63	64	65	66	67	68	69	70
D	А	С	D	А	В	А	D	В	В
71	72	73	74	75	76	77	78	79	80
В	А	D	А	D	D	В	А	D	C
81	82	83	84	85	86	87	88	89	90
С	А	А	С	А	D	D	D	С	С
91	92	93	94	95	96	97	98	99	100
С	С	В	D	В	В	В	D	В	С
101	102	103	104	105	106	107	108	109	110
С	В	С	С	С	А	В	С	В	В
111	112	113	114	115	116	117	118	119	120
В	В	В	С	В	С	С	D	С	С
121	122	123	124	125	126	127	128	129	130
С	С	А	С	D	D	А	С	D	D
131	132	133	134	135	136	137	138	139	140
В	А	В	В	В	С	С	С	D	С
141	142	143	144	145	146	147	148		
В	А	С	В	А	А	D	А		

NEET PREVIOUS YEARS QUESTIONS-ANSWERS

- 1 (b) 2 (a) 3 (b) 4 (b) 5 (d) 6 (b) 7 (b) 8 (d) 9 (a) 10 (d) 11 (c) 12 (b) 13 (a) 14 (3) 15 (4) 16 (2) 17 (2) 18 (2) 19 (3) 20 (1)
- **21** (3) **22** (2) **23** (3) **24** (1) **25** (2)

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS

- **1. (b)** ATP, NADPH and oxygen are products of light reaction, while NADH is a product of respiration process.
- 2. (a) Green sulphur bacteria do not use H2O as source of proton, therefore they do not evolve O2
- **3.** (b) In C3 plants, photosynthesis decreases at higher temperature due to increased photorespiration. C₄ plants have higher temperature optimum because of the presence of an enzyme called pyruvate phosphate dikinase, which is sensitive to low temperature.

- 4. (b) Proton concentration is higher in the lumen of thylakoid due to photolysis of water, H+ pumping and NADP reductase activity in stroma. During the lightdependent reaction, protons are pumped across the thylakoid membrane into the lumen making it acidic down to pH 4.
- **5. (d)** Many leaves produce water-soluble vacuolar pigments, which are stored within cell vacuoles (microscopic water sacs within each cell). Two major classes of leaf vacuolar pigments are anthocyanins and betalains.
- 6. (b) Wavelengths beyond 700nm are apparently of insufficient energy to drive any part of photosynthesis. So in huge drop in efficiency has been noticed at 700nm. This phenomenon is called as "Red drop effect". This effect was first of all noticed by Robert Emerson. Later on Emerson and his group observed that if *Chlorella* plants are given the inefficient far red light and red light of shorter wavelengths in alternate fashion, the quantum yields were greater than could be expected from adding the rates found when either color was provided alone. This synergistic effect or enhancement is known as EEE or "Emerson Enhancement Effect". This was the first good evidence that there are two photosystems; one absorbs far red light and other red light and both of them must operate to drive photosynthesis most effectively.
- 7. (b) C4 plants are adapted to hot and dry climate and lack photorespiration due to Kranz anatomy and have greater productivity of biomass.
- 8. (d) Chromatophores play an important role in the process of photosynthesis. They contain pigments and are found in blue green algae.
- **9.** (a) In chloroplasts which are green coloured plastids, thylakoids are arranged in stacks like the pile of coins called grana.
- 10. (d) During photosynthesis photolysis of water is induced by Mn++ and CI- ions.
- **11.** (c) Stromal matrix contains a number of flattened membranous sacs called thylakoid or lamellae.
- **12.** (b) Cytochromes are found in mitochondria. These are located on the inner membrane of mitochondria and are related with phosphorylation.
- 13. (a)
- **18.** Plastoquinone facilitates the transfer of electrons from PS-II to Cytb₆f complex
- **19.** In the first step of photorespiration 1 molecules of 3-C compound (PGA) and 1 molecule of 2-C compound phosphoglycolate
- **20.** The first stable product of CO_2 fixation in sorghum is Oxaloacetic acid
- **21.** Cyclic photophosphorylation involves only PS I. Both PS I and PS II are involved in non-cyclic photophosphorylation where both ATP and NADPH + H⁺ are synthesized.
 - Both PS I and PS II are found on grana lamellae whereas stroma lamellae have PS I only and lack NADP reductase
- 22 Breakdown of electron gradient is not found during chemiosmosis which is associated with ATP synthesis
- 23. Ethylene is known to produce female flowers in cucumber plants
- 24. Both the statements are correct
- 25 Bundle sheath cells found around the vascular bundles in C_4 plants helps to increase the number of chloroplasts