

Biology Smart Booklet Theory + NCERT MCQs + NEET PYQs

www.alliantacademy.com

2

RESPIRATION IN PLANTS

Respiration

Respiration is an energy releasing, enzymatically controlled catabolic process which involves a step-wise oxidative breakdown of food substance inside living cells.

Aerobic Respiration: Aerobic Respiration is an enzymatically controlled release of energy in a stepwise catabolic process of complete oxidation of organic food into carbon dioxide and water with oxygen acting as terminal oxidant.

Anaerobic Respiration: Anaerobic respiration is the type of respiration through which cells can break down sugars to generate energy in the absence of oxygen. This is in contrast to the highly efficient process of aerobic respiration, which relies on oxygen to produce energy.

Aerobic Respiration

- Glycolysis
- Kreb's Cycle
- Terminal Oxidation

Glycolysis

- The scheme of glycolysis is given by Gustav Embden, Otto Meyerhof, and J. Parnas. It is also called as EMP pathway.
- Glycolysis is the partial oxidation of glucose or similar hexose sugar into two molecules of pyruvic acid through a series of enzyme mediated reaction releasing some ATP and NADH2. It occurs in cytoplasm.
- In plants glucose is derived from sucrose or from storage carbohydrates. Sucrose is converted into glucose and fructose by enzyme invertase.
- Glycolysis starts with phosphorylation of glucose in presence of enzyme hexokinase to form Glucose-6-phosphate. One molecules of ATP is used in this process.
- In next steps Glucose-6-phosphate is converted into fructose-6-phosphate, catalyzed by enzyme phosphohexose isomerase.
- Fructose-6-phosphate uses another molecule of ATP to form Fructose-1-6 biphosphate in presence of enzyme phosphofructokinase.

Tricarboxylic Acid Cycle/ Kreb's Cycle

- The Acetyl CoA enters a cyclic pathway called TCA cycle or Kreb's cycle.
- TCA cycle was discovered by Hans Krebs in 1940. This cycle is called TCA cycle because initial product is citric acid.
- Acetyl CoA combine with OAA (Oxaloacetic acid) and water to yield citric acid in presence of enzyme citrate synthase to release CoA.
- Citrate is then isomerized to isocitrate. It is followed by two successive steps of decarboxylation, leading to the formation of a-ketoglutaric acid and then succinyl-CoA.
- In the remaining steps, succinyl-CoA is oxidized to OAA allowing the cycle to continue.
- There are three points in the cycle where NAD + is reduced to NADH₂ and one point where FAD + is reduced to FADH₂.
- A molecule of glucose produces two molecules of NADH₂, 2ATP and two pyruvate while undergoing glycolysis. The two molecules of pyruvate are completely degraded in Krebs cycle to form two molecules of ATP, 8NADH₂ and 2FADH₂.

 $\begin{array}{c} \text{Mitochondrial} \\ \text{Pyruvic} + 4\text{NAD}^{+} + \text{FAD}^{+} + 2\text{H}_2\text{O} + \text{ADP} + \text{Pi} \\ \hline & \begin{array}{c} \text{Mitochondrial} \\ \text{Matrix} \\ \end{array} \\ \begin{array}{c} +4\text{NADH} + 4\text{H}^{+} \\ \text{FADH}_2 \\ \end{array} \\ \begin{array}{c} +4\text{H}^{+} \\ \text{ATP} \end{array} \end{array}$

Terminal Oxidation

Terminal Oxidation is the name of oxidation found in aerobic respiration that

4

occurs towards end of catabolic process and involves the passage of both electrons and protons of reduced coenzyme to oxygen to produce water.

Electron Transport Chain

- The metabolic pathway through which the electron passes from one carrier to another inside the inner mitochondrial membrane is called ETC or mitochondrial respiratory chain.
- Electrons from NADH produced during citric acid cycle are oxidized by NADH dehydrogenase and electrons are transferred to ubiquinone located within the inner membrane. Ubiquinone also receives electrons from FADH₂ which is transferred to cytochrome c via cytochrome bc₁ complex.
- When the electrons pass from one carrier to another via electron transport chain, they produce ATP from ADP and inorganic phosphate. The number of ATP molecules synthesized depends upon electron donor.
- Oxidation of one molecule of NADH gives rise to 3 molecules of ATP, while oxidation of one molecule of FAD₂ produce two molecules of ATP.

Oxidative phosphorylation

It occurs in respiration process. Energy of oxidation-reduction is used for production of proton gradient required for phosphorylation.

Photophosphorylation

It occurs in photosynthesis. Light energy is utilized for production of proton gradient for phosphorylation.

Fermentation

• It accounts for incomplete oxidation of glucose.

- In fermentation, there is net gain of only two molecules of ATP.
- NADH is oxidized to NAD+ very slowly.

Aerobic Respiration

- It accounts for complete oxidation of glucose.
- In aerobic respiration, there is more net gain of ATP.
- NADH is oxidized to NAD+ very fast.

Amphibolic Pathway

- Glucose is the favored substrate for respiration. All carbohydrates are usually converted into glucose before used for respiration.
- Fats needs to be broken down into glycerol and fatty acid, which is further broken converted into Acetyl CoA and enter the respiratory pathway.
- Proteins are broken into amino acids and further enter Krebs cycle.
- Breaking down process within living organism is called catabolism and synthesis process is called anabolism process. So, respiration is an Amphibolic pathway.

NCERT LINE BY LINE QUESTIONS

1.	Respiration is defined as –	t do we know?	(Pg. 227, E)
	A) Formation of $C - C$ bonds of complex	compound	(- 8,, -)
	B) Breaking of $C = C$ bonds of complex complex	ompound	
	C) Breaking of C = N bonds of complex c	ompound	
	D) All of the above	ompound	
2	Respiration results finally to a formation	and release of which among the fo	llowing?
۷.	Respiration results intury to a formation	and recease of which allong the lo	(Pσ 227 F)
	A) NADPH B) Clucose	C) ATP D) Both A &	(1 6 , 22), 1)
3	The $C = C$ bond of complex compound in	broken by which process in respir	ation?
5.	The C - C bond of complex compound if	i bioken by which process in respin	$(P\sigma 227 F)$
	A) Ovidation	B) Reduction	(1 g. 227, L)
	C) Hydrogenation	D) None of the above	
4	Agention ATP act as open automatic	f coll	
4.	Assertion – All act as energy cullency c	ation is transad as his shamical on	anow in the form of
	A TD	ation is trapped as bio-chemical en	$(\mathbf{B}_{\mathbf{T}}, \mathbf{D}_{\mathbf{T}}, \mathbf{D}_{\mathbf{T}}, \mathbf{D}_{\mathbf{T}})$
	Alr.		(rg. 227, n)
	A) Only Assertion is correct		
	B) Only Reason is correct		
	C) Both Assertion and Reason is correct		
_	D) Both Assertion and Reason is wrong		
5.	Which among the following is wrong?		(Pg. 227, E)
	1) Only carbohydrates are oxidised to rele	ease energy in the process of respir	ation.
	ii) Energy produced in respiration is not	released in a single step.	
	iii) ATP can be broken down, as and whe	en energy needs to be utilised.	
	A) Only ii	B) Only iii	
	C) Only i	D) None of the above	
6.	ATP stands for?		(Pg. 227, E)
	A) Adeno <mark>sine</mark> 3' – triphosphate		
	B) Adenosine – 3' – trio phosphite		
	C) Adenosine 5' – triphosphate		
	D) Adenosine 5' – triophosphite		
7.	Compounds that are oxidised during the	process of respiration is called?	(Pg. 227, E)
	A) Respiratory index	B) Reductory substrate	
	C) Respiratory quotient	D) Respiratory substrate	
8.	Statement I – Only green plants and cyar	abacteria can prepare their own fo	od by
	photosynthesis.		
	Statement II - Only green plants and cya	nobacteria can prepare their own f	ood
	by converting chemical energy to light er	nergy	
	Which of the statements is/are true?		(Pg. 227, M)
	A) Only I	B) Only II	
	C) Both of these	D) None of these	
9.	"Ultimately all the food that is respired for	or life processes comes from photo	synthesis."
	The above statement is –	1 1	(Pg. 227, M)
	A) correct	B) incorrect	
	C) partially correct	D) can't be said as it is incomplet	e
	/ * .	, I	

					, ,
10.	Which of the following	cannot be used as	s respiratory substanc	ces in plants ı	under any
	conditions?				(Pg. 227, E)
	A) fat		B) protein		
	C) carbohydrate		D) none of these		
		<u>14.1 Do l</u>	Plants Breathe?		
11.	What are the byproduct	ts of Respiration j	process?		(Pg. 227, E)
	A) Oxygen		B) Water		
	C) Carbon dioxide		D) Both B and C		
12.	Respiration is a	_ process.			(Pg. 227, E)
	A) Anabolic		B) Catabolic		
	C) Both Anabolic as we	ll as catabolic	D) None of the abo	ve	
13.	Choose the correct equa	ation-			(Pg. 228, E)
	A) $C_6H_{12}O_6 + 12O_2 \rightarrow 6I_2$	H ₂ O + 6H ₂ O + En	ergy		/
	B) $C_6H_{12}O_6 + 3O_2 \rightarrow 2C_6$	O ₂ + 3H ₂ O + Ener	rgy		
	C) $C_6H_{12}O_6 + 6CO_2 + 6H_{12}O_6$	I2O + Energy			
	D) $C_6H_{12}O_6 + 6O_2 \rightarrow 6C$	O ₂ + 6H ₂ O + Ene	rgy		
14.	Respiration organs for r	olants are-	0,		(Pg. 228, E)
	A) Lenticels		B) Stomata		() -, -,
	C) Woody Bark		D) Both of the abov	e A and B	
15.	Which among the follow	wing is wrong?			(Pg. 228, M)
-0.	A) Roots, Leaves and St	em respire a for l	ower than animal do		(- 8,)
	B) For plants to respire	availability of O	is a problem as O ₂ is	not released	
	within the cell during p	hotosynthesis		notreicubed	
	() There is very little tr	ansport of gases f	rom one plant part to	another	
	D) None of the above	unopoir of gases I	ioni one plant part to		
			'Clycolysis'		
16	Clucolucio in originatad	<u>14.2</u>	GIYCUIY515		$(\mathbf{D}_{\mathbf{T}}, \mathbf{D}_{\mathbf{T}})$
10.	A) Letin word	110111-	B) Enorch word		(rg. 220, ej
	C) Italian word		D) Create word		
17	C) Italian word	_	D) Greek word		
17.	Neaning of glycolysis is	8-	\mathbf{D} C \mathbf{c}^{1}	_	
	A) Splitting of water		b) Splitting of sugar	r	
10	C) Splitting of fat		D) Splitting of prote	ein	
18.	Glycolysis is also know:	n as pat	hway.		
	A) ETS B) EMP	C) ENP	D) ELP	
19.	The scheme of glycolysi	is was given by-			
	A) Gustav Embden		B) Otto Meyerhof		
	C) J. Parnas		D) All of the above		
20.	The scheme of glycolysi	is was given by-			
	A) Gustav Embden		B) Alto Meyerhof		
	C) J. Parnas		D) All of the above		
21.	Glycolysis occurs in wh	ich among the fo	llowing?		
	A) Aerobic organism	-	B) Anaerobic organ	ism	
	C) Eukaryotes		D) All of the above		
22.	Sucrose is converted to	(i) and(ii)	using enzyme (ii	ii)	
			0 , _(,	
	(i)	(ii)	(iii)		

(i)	(ii)	(iii)
A) Glucose	Glucose	Hexokinase
B) Glucose	Fructose	Hexokinase
C) Glucose	Glucose	Invertase

	D) Glucose	Fructose		Invertase			
23	What is the isomericad	produce of duce	co 6	hoonhata in t	the stops of a	lucolucio	2
23.	what is the isomerised	produce of glucos	se – 6 – p	nosphate m	the steps of §	(Pσ 22 9	: (F)
	A) Fructose 1, 6 – bispł	nosphate	B) Fruc	tose -6 - pho	osphate	(1522)	, L)
	C) Fructose –1, 3, 6 – tr	iphosphate	D) Frue	ctose –3 – ph	osphate		
24.	Glycolysis is a how ma	iny steps of proces	ss?	1	1	(Pg 229	, E)
	A) Ten I	3) Eight	C) Elev	ren	D) Five		
25.	End product of glycoly	vsis is?				(Pg 229	, E)
a ć	A) Pyruvate	3) Phenol	C) Prus	sic acid	D) Phosph	oenolpyr	uvate
26.	ATP is utilised in which	h steps of glycoly	S1S.			(Pg 229	, E)
	i) Conversion of BPGA	to PGA	phoen	aato			
	ii) Conversion fructos	e 6 – phosphate to	fructose	$\frac{1}{1} 6 - \text{bispho}$	snhate		
	iv) Conversion of PEP	to pyruvate	nuclose	1,0 0130110	spriate		
	A) Only i		B) Only	y iii			
	C) Both ii and iii		D) Onl	y ii, iii, iv			
27.	One molecule of glucos	se is converted int	o ho <mark>w m</mark>	any molecule	es of pyruvic	cacid?	
						(Pg 229	, E)
	A) 1	3) 2	C) 3		D) 4		
28.	When PGAL is convert	ted into BPGA in J	process o	f respiration	there is form	nation of?	T
	(A) 1 (ATD)		D) 1	1	0	(Pg 229	, E)
	A) I molecule of ATP C 1 molecule of NAD		D 1 m	olocule of H2			
29	PGAL get an	d get converted to	BPGA?	olecule of Al		UPg 229	F)
۷.	A) reduced	a get converted to	B) hvd	rolvsed		(1522)	, L)
	C) oxidized		D) all c	of these			
30.	Conversion of 2-phosp	hoglycerate to ph	osphoend	olpyruvate le	ads of forma	ation of?	
			-			(Pg 229	, E)
	A) ATP I	3) NADH2	C) H ₂ C)	D) ADP		
31.	What does PGAL stand	ds for?				(Pg 229	, E)
	A) 3 – Phosphoglycera	ldehyde					
	B) 5 – Phosphoglyceral	dehyde					
	D) 5 Phosphoglyceric						
32	What is the full form α	f PEP?				(Po 229	E)
02.	A) Pyroenol pyruvate		B) Pvri	ivic pyruvate	<u>e</u>	(- 8)	, _,
	C) Phosphoenolpyruva	ate	D) Nor	ne of the abov	ve		
33.	Pyruvic acid is compos	sed of how many o	carbon at	om?		(Pg 229	, E)
	A) Two	3) Three	C) Fou	r	D) Five	_	
34.	Which among the follo	wing step in glyco	olysis yie	lds energy?		(Pg 229	, E)
	i) Conversion of BPGA	to PGA					
	ii) Conversion of fructo	ose – 6 –phosphate	e to fructo	ose 1, 6 –bisp	hosphate		
	iii) Conversion of PEP	to pyruvic acid	to free - 1		anhata		
	A) Both ii and iv	use – o –phosphate	$C \to R_{O}$	use – o – pno ni and iii	Spriate D) All of H	ne abovo	
35	In alveolvsis fructose	1, 6 – bisnhosnhati	e get snli	t into which	of the follow	ring?	
		-,	- 9-1 5PH			(Pg 229	, E)
	A) PGAL and BPGA						. ,

9

	B) Glyceraldehydd	e – 3 – phospha	te and 3	- phosphoglyceric	c acid	
	C) Glyceraldehydd	e – 3 – phospha	ite and I	Dihydroxy acetone	phosphate	
A (D) None of the ab	ove		1 1 7 1 .	1 .	1 1
36.	What is the net ga	in of ATP from	one mo	lecule of glucose in	n one complete	glycolysis?
	A) 1	D) 2		C) E	D) 2	(Pg 229, M)
27	A) 4 Lless we see ATD -	D) 3		C_{0}	D) Z	1 1 - 2
37.	How many ATP a	re utilized in co	omplete	process of glycoly	sis of one gluco	se molecule?
	A) 7	D) 1		()	D) 4	(Pg 229, M)
20	A) Z How mony moloc	D) I		C) 3	D) 4	alucalusis of one
30.	alucese melocule?	ules of NADIT	are proc	luced in one comp	fete process of §	$(\mathbf{P}_{\alpha}, 220, \mathbf{M})$
		B) 2		()	D) 4	(rg 229, M)
30	How many moloc	$D_{j} \ge D_{j} = D_{j} = D_{j} \ge D_{j} = D_{j$	diroctly	C) J	complete alveo	lycic of one alucese
59.	molecule?	ules of ATT are	unecuy	produced in one	complete gryco.	$(P_{\sigma} 229 F)$
	A) 1	B) 2		C	D) 4	(1 g 22), L)
40	Which among the	following are c	orrect a	bout Glycolysis?	D) 4	(Pg 229 F)
40.	i) It is the only pro	cess that occur	s in ana	erobes for ovidation	n of alucose	(1 g 22), L)
	i) Glucose under	roes complete c	vidation	to form pyruvic	acid	
	iii) At the end the	re is a net gain	of 4 AT	P and 2 NADH	icid.	
	A) Only ii	ie is a net gam	01 + 111	B) Both ii and iii		
	C Only i			D) all of the above	70	
41	For further comple	ete oxidation of	f glucose	e, pyruvic acid ent	ers to which am	ong the following?
	i of further compr		gracos	s, p j ruvie dela elle	cib to writeri ui	(Pg 229, E)
	A) ETS			B) Kreb's cycle		(-8)
	C) EMP pathway	ian		D) None of the a	bove	
42.	Fermentation occu	urs when there	is /			(Pg 230, E)
	A) Complete supp	oly of oxygen		B) No supply of	oxygen	
	C) Complete supp	ly of water		D) No supply of	water	
43.	In alcoholic ferme	ntation, pyruva	ate is cor	nverted to which a	mong the follow	wing?
	A) Ethanol, CO ₂ , N	NADH			0	(Pg 230, E)
	B) CO_2 and Metha	nol				
	C) CO_2 and Ethan	ol only				
	D) CO ₂ and Carbo	xylic acid				
44.	Which enzyme is a	responsible for	alcoholi	c fermentation?		(Pg 230, E)
	A) Pyruvic acid de	ecarboxylase				
	B) Lactate dehydr	ogenase				
	C) Alcohol dehyd	rogenase				
	D) More than one	option is corre	ct			
45.	Which enzyme is	involved in lact	tic acid f	ermentation?		(Pg 230, E)
	A) Pyruvic acid de	ecarboxylase				
	B) Lactate dehydr	ogenase				
	C) Alcohol dehyd	rogenase				
	D) More than one	option is corre	ct			
46.	Choose the correc	t option				(Pg 230, M)
	In the fermentatio	n process:-				
	1) Oxidation of AL	PP to ATP takes	s place			
	11) Keduction of A	IP to ADP take	es place	1. 1. NTATA		
	iii) Keducing agen	t NADH + H+	is reoxic	alsed to NAD+		
	1V) Formation of N	ADH + H+ tak	kes place	c by oxidation	$D \land 1 \cdots$	
	A_{j} II and IV	D) 11 and 111		C) doth 1 and 111	D) Only 11	

47.	How many statements are correct about f	ermentation?	(Pg 230, M)
	i) Very low amount of energy is released,	< 7% of energy in glucose is r	released in
	termentation		
	ii) In animal cells, when oxygen is inadeq	uate acetic acid is formed dur	ing respiration
	iii) It is dangerous process as it leads to ad	and alcohol formation.	
	A) 0 B) 1	C) 2 D) 3	
48.	The range beyond which yeasts poison th	emselves to death in alcohol f	fermentation when the
	concentration of alcohol reaches to?		(Pg 230, E)
	A) 13% B) 15%	C) 12% D) 17%	
49.	Which among the following is the process	ses steps in, complete cellular	respiration which
	don't need oxygen molecule (O ₂)?		(Pg 231, E)
	A) Glycolysis	B) Tricarboxylic acid cycle	
	C) ETC	D) Both A and B	
	14.4 Aero	bic Respiration	
50.	Complete the following reaction-		
	Pyruvic acid + (i) + NAD+ $\xrightarrow{(i)}_{Enzyme}$ Acet	yl C <mark>OA +(iii)</mark> + NAD + H+	(Pg 231, E)
	A) (i) O_2 (ii) Mg^{2+} (iii) CO_2	B) (i) O_2 (ii) Na+ (iii) H ₂ O	
	C) (i) CoA (ii) Na ⁺ (iii) CO ₂	D) (i) CoA (ii) Mg^{2+} (iii) CO ₂	
51	Pyruvate enters to the mitochondrial mat	rix and undergoes	(Pg 231, E)
011	A) Reductive decarboxylation	B) Oxidative carboxylation	(-8-0-) -)
	C) Reductive carboxylation	D) Oxidative decarboxylatio	n
52	Which enzyme catalyse the reaction going	on in mitochondrial matrix i	n respiration?
02.	(Then endy ne catalyse the reaction going		(Pg 231, E)
	A) Pyruvate carboxylase	B) Lactate dehydrogenase	(-8-0-) -)
	C) Alcohol dehvdrogenase	D) Pyruvate dehydrogenase	
53.	Who elucidated Tricarboxylic Acid cycle?		(Pg 231, E)
	A) Johns Elen	B) Hans Krebs	
	C) Meverhoff	D) Elena Parker	
54	Formation of Acetyl coenzyme A from Py	vruvate in mitochondrial matr	ix vields which among
0 11	the following?	(Pg 231	. E)
	A) CO_2	B) H ₂ O	,, –)
	C NADPH + H+	D) Both A and C	
55	How many molecules of NADH + H^+ are	produced when pyruvate cor	overts to Acetyl CoA in
00.	TCA cycle?	produced when pyravate cor	(Pg 231, E)
	A) 0 B) 1	C) 2 D) 3	(-8,-)
	14.4.1 'Tricarl	oxylic Acid Cycle'	
56	Where does TCA cycle occurs?	chyllerick cycle	(Pg 231, E)
00.	A) Cytoplasm	B) Mitochondria cell wall	(-8-0-) 2)
	C) Mitochondrial matrix	D) Chloroplast	
57	What is the first product of TCA cycle?	D) emoropiuse	(Pσ 231 F)
07.	A) Acetyl CoA	B) Citric acid	(19 =01, 1)
	C) Isocitric acid	D) OAA	
58	What is the 1st step of TCA cycle?		(Pσ 231 F)
50.	A) Formation of citrate from isocitrate		(1 5 201, 1)
	B) Formation of citrate from the acetyl co	enzyme A	
	C) Formation of citrate from decarboxyla	tion of succinic acid	
	D) None of the above	non or succinic actu	
50	Which any time actal wave the first stop of	[CA] cycle?	(Pg 921 F)
59.	A) Citrate Synthese	B) Citrata Roductoco	(1 8 201, 1)
	1) Chiale Synthase	b) Chiale Reductase	

	C) Citrate Oxidase	D) None of the a	above	
60.	What is the first member of TCA cycle	that accepts Acetyl	CoA?	(Pg 231, E)
	A) Citrate	B) CoA		
	C) Oxaloacetic acid	D) Both A and C	2	
61.	Which among the following is synthesi	zed during the con	version of succir	yl – CoA to
	succinic acid in TCA cycle?	U		(Pg 232, E)
	A) FADH ₂ B) GTP	C) NADH ₂	D) ATP	
62.	How many total CO ₂ molecule are released	ased from Pyruvate	to completion o	f TCA cycle?
			-	(Pg 232, E)
	A) 0 B) 1	C) 2	D) 3	
63.	How many total NADH ₂ are produced	from pyruvate to c	ompletion of TC	A cycle?
				(Pg 232, E)
	A) 2 B) 3	C) 4	D) 5	
64.	How many FADH ₂ are produced in TC	CA cy <mark>cle?</mark>		(Pg 232, E)
	A) 1 B) 2	C) 3	D) 4	
65.	One m <mark>ole</mark> cule of glucose synthesizes ho	ow ma <mark>ny mole</mark> cules	of NADH + H+	• at the end of TCA
	cycle?			(Pg 232, E)
	A) 6 B) 7	C) 8	D) 10	
66.	How many molecules of FADH ₂ are yie	elded <mark>from one gluc</mark>	<mark>cose</mark> molecule at	the end of TCA
	cy <mark>cle</mark> ?			(Pg <mark>232</mark> , E)
	A) 1 B) 2	C) 3	D) 4	
67.	How many net ATP molecules are dire	ctly yielded from co	o <mark>mplete ox</mark> idatio	on of one
	g <mark>luc</mark> ose (including ATP of TCA)?			(Pg 232, E)
	A) 4 B) 2	C) 3	D) 8	
68.	Which among the following is wrong?			(Pg 232, E)
	(i) <mark>Gl</mark> ycolysis occurs in all living organi	sm.		
	(ii) TCA cycle and ETS only occurs in a	erobes.		
	(iii) Complete oxidation of pyruvate oc	curs by removal of	all hydrogen ato	om in TCA cycle.
	A) (i) B) (ii)	C) (iii)	D) None of	f the above
	14.4.2 Electr	on Transport Sy	stem	
	(ETS) and Oxi	dative Phosphor	ylation	
69.	ETS occurs in which place?			(Pg 232, E)
	A) Outer membrane of mitochondria			
	B) Cytoplasm			
	C) Inner membrane of mitochondria			
	D) Matrix of mitochondria			
70.	Energy stored in NADH + H ⁺ FADH ₂ a	<mark>re r</mark> eleased in ETS t	through	_·
				(Pg 232, E)
	A) Reduction of these molecules	B) Oxidation of	these molecules	
	C) Hydrolysis of these molecules	D) Both A & B		
71.	ETS stands for			(Pg 232, E)
	A) Electrical Transport System	B) Electron Trar	smission Systen	n
	C) Electron Transport System	D) None of the a	above	
72.	When the electrons are passed onto O_2	in ETS it leads to fo	rmation of what	?
				(Pg 232, E)
	A) CO ₂ B) ATP	C) H ₂ O	D) NADH	+ H+
73.	Ubiquinone is located at			(Pg 233, E)
	A) inner membrane of mitochondria			
	B) outer membrane of mitochondria			
	C) inner membrane of nucleus			

	D) outer membrane of nucleus			
74.	Ubiquinone receives electrons from which	h of the following?		(Pg 233, E)
	i) From NADH produced in mitochondria	al matrix during TCA	Δ.	
	ii) From FADH ₂ produced during oxidati	on of succinate in TC	CA.	
	Á) Only i	B) Only ii		
	C) Both i and ii	D) None of the abov	ve	
75.	Electrons from NADH produced during	TCA are oxidised by	which enzym	e?
	I I I I I I I I I I I I I I I I I I I)	(Pg 233, E)
	A) NAD ⁺ hvdrogenase	B) NADH dehvdrog	zenase	
	C) NAD ⁺ hydroxylase	D) NADH dehvdro	xvlase	
76.	The reduced ubiquinone are also called w	vhat?		(Pg 233, E)
	A) Ubiguinate	B) Ubiquinase		
	C) Ubiguinal	D) Ubiquinol		
77.	Cytochrome c is ?	-)		(Pg 233, E)
	A) Lipid	B) Carbohydrate		(-8, -,
	C) Protein	D) Fat		
78.	What is the function of cytochrome c?			(Pg 233, E)
	A) Act as donor of electron			(18 -00) 2)
	B) Passage for movement of e-			
	C) Act as a receptor of e-between comple	ex II and III		
	D) Act as a mobile carrier for e - transfer h	etween complex III a	nd IV	
79	What does cytochrome c oxidase complex	x contains?		(Pg 233 F)
17.	A) Cytochrome a	B) Cytochrome a3		(19200, 1)
	() Two copper centres	D) All of the above		
80	When e- passes from complex I to IV in F	TS they are coupled t	to fo	r ATP
00.	production from ADP	ito they are coupled		(Pg 233 F)
	A) Cytochrome c	B) Cytochrome bc1		(16200, L)
	C) ATP synthase	D) Both A and B		
81	Oxidation of one molecule of NADH ₂ pro	duces how many mo	lecules of AT	Р?
01.	o she uno for one morecure of the Diright	faces now many me		(Pg 233, E)
	A) 1 B) 2	C) 3	D) 4	(19 =00, 1)
82	Oxidation of 2 molecule of FADH ₂ produ	ces how many molec	ules of ATP?	(Pg 233, E)
° - .	A) 1 B) 2	C) 3	D) 4	(18 -00) 2)
83	Which among the following is the role of	O_2 in whole respirati	on process?	(Pg 233, M)
00.	i) Act as hydrogen removal from the syste	em	on process:	(18 =00) 111)
	i) Act as final hydrogen acceptor	ciii,		
	iii) It bond with C atom and released CO	one of the byprodu	ct of respiration	on.
	A) ii and iii	B) iii only	et of respiration	
	C) Both i and ii	D) All of the above		
84	ETS of respiration process is called	D) I III OI UIC UDOVC		(Pg 233, E)
01.	A) Reductive phosphorylation			(19 =00) 2)
	B) Oxidative phosphorylation			
	C) Oxidative photophosphorylation			
	D) Both B and C			
85	Which among the following is wrong abo	uit ATP synthase?		(Pg 234 F)
00.	i) It is also called complex V	actiff Syntheses		
	i) This is used to synthesis ATP by utilisi	no the enerov release	d during FTS	
	iii) It works on the basis of proton gradier	nt		•
	iv) It consist of two major components F_1	and Fo		
	A) Only ii	B) Both i and iii		

	C) i and iv	D) None of the abov	e	
86.	What is F1 in ATP synthase?			(Pg 234, E)
	A) It contain a site for protein synthesis.			
	B) It contain a site for ADP synthesis from	i ATP.		
	C) It contain a site for ATP production from	m ADP.		
	D) It act as a channel through which proto	on cross the inner me	mbrane.	
87.	What is the role of F0 in ATP synthase?			(Pg 234, E)
	A) It act as a channel through which ecros	ses the inner membra	ane.	
	B) It act as a channel through which prote	n crosses the inner m	embrane.	
	C) It act as a mobile protein carrier of elec	tron across the inner	membrane.	
	D) Acts as site for ATP synthesis			
88.	For each ATP produced, passes	through F0 from inter	rmembrane s	space to
	the matrix down the electrochemical prot	on <mark>gradi</mark> ent.		(Pg 234, E)
	A) H+ B) 2H+	C) 3H+	D) 4H+	
	<u>14.5 The Respire</u>	atory Balance She	<u>eet</u>	
89.	What is the net gain of ATP molecules du	ring aerobic respiration	on of one glu	cose molecule?
				(Pg 234, E)
	A) <mark>40 A</mark> TP B) 38 ATP	C) 36 ATP	D) 34 ATP	
90.	M <mark>atc</mark> h the following			(Pg 234, H)
	1 <mark>Gly</mark> colysis i Mitochondrial ma	trix		
	2 TCA ii Cytoplasm			
	3 ETC iii Inner membrane	of mitochondria		
	A <mark>) 1</mark> -i, 2-ii, 3-iii	<mark>B) 1-ii, 2-</mark> i, 3-iii		
	C) 1-iii, 2-ii, 3-I	D) 1-ii, 2-iii, 3-i		
91.	The respiratory balance sheet is calculated	<mark>l on some assumptio</mark> r	ns.	
	Which of the following assumption is corr	rect?		(Pg 234, M)
	A) The pathway is sequential, with series	of glycolysis, ETS and	d TCA cycle	in the
	same order for a given molecule.			
	B) NADH is transferred to chloroplast wh	ere oxidative phosph	orylation occ	curs, leading to
	formation of 3 ATP	.1 1	1	
	C) Only glucose is the substrate and none	other substrate or int	ermediate er	nters
	or leaves the pathway			
00	D) None of these			(D 004 M)
92.	In the balance sheet of fermentation, net g	ain 1s - 1 = 1		(Pg 234, M)
	A) 12 ATP molecules	B) 38 ATP molecules		
02	C) 2 ATP molecules	D) 8 ATP molecules		(D- 005 N/)
93.	Oxidation of NADH to NAD+ 15 -	mination		(Pg 235, M)
	A) Slower in fermentation than aerobic re	spiration		
	b) Faster in fermentation than aerobic res			
	C) Equal in termentation and aerobic resp D) Connot be commoned	Iration		
	D) Cannot be compared	the 1the Dettermore		
04	Milish success the full is in a	<u>ibolic Pathway</u>		$D = 0.05 + f^{\prime}$
94.	Which among the following is wrong?	1 1		Pg 235, M)
	i) Other than glucose, no other substrates	can be used in respira	atory process	5.
	ii) Different exhatisted or terrest diffe	pathway.	athress	
	A) Only i P) Only iii	Stage in respiratory p	$D) P_{a} = 1$	4 ::
OF	A) Only I D) Only III Which among the following is a surroup of		סט וע both 1 an	
7 3.	i) Other than alwage no other substrates	on housed in reasoning	tom process	rg 235, MJ
	i) Respiratory pathway is an amphibalian	an de useu in respira	tory process.	
	nj nespiratory patriway is an ampribolic p	autway.		

	iii) Different substrate	es enters at different	stage in respiratory	pathway.	
	A) Only i	B) Only iii	C) Only ii	D) Both i ai	nd ii
96.	Fats as a respiratory s	substrate converts to	which compound fi	rst?	Pg 235, M)
	A) Dihydroxy Aceton	ı Phosphate	B) Glycerol		
	C) Fatty acid		D) Both B and C		
97.	Match the following-				Pg 235, H)
	1 Amino acids		i Pyruvic acid		
	2 Fatty acid		ii Dihyroxy Acetor	ne Phosphate	
	3 Glycerol		iii Acetyl CoA		
	A) 1-i, 2-iii, 3-ii	B) 1-ii, 2-i, 3-iii	C) 1-iii, 2-i, 3-ii	D) 1-ii, 2-iii	, 3-i
98.	Choose the correct ac	cording to the correc	ct sequence (from su	bstrate to end	product)
					(Pg 235, M)
	i) Glucose 6 – phosph	ate	ii) <mark>Pyru</mark> vic acid		
	iii) Carbohydrate		iv <mark>) Fruc</mark> tose–1, 6-b	isphosphate	
	v) Gluco <mark>se</mark>				
	vi) Dih <mark>ydr</mark> oxy Acetor	າe Phosphate ≓ Glyc	eraldehyde 3 – phos	phate	
	A) i, i <mark>ii, i</mark> v, v, vi, ii		B) <mark>iii, iv, v, ii, i</mark> , vi		
	C) iii <mark>, v</mark> , i, ii, iv, vi		D) <mark>iii, v, i, iv, vi, i</mark> i		
		<u>14.7 Respi</u>	ratory Quotient		
99.	Which statement is tr	ue about RQ?			(Pg 236, M)
	i) It is also called resp	iratory ratio.			
	ii) It is the volume of	O2 released over the	e volume of CO ₂ evo	<mark>lved durin</mark> g re	spiration.
	iii <mark>) R</mark> Q of diff. substra	te is different.			
	A) Only i	B) Only iii	C) Both i and iii	D) All of th	e above
100.	Choose the correct.				(Pg 236, M)
	A) RQ = volume of C	O ₂ evolved/volume	of O ₂ consumed		
	B) $RQ = volume of O_2$	consumed/volume	of CO ₂ evolved		
		<u>eonounieu</u> , voiunie			
	C) $RQ = volume of O_2$	² evolved/volume o	f CO ₂ consumed		
	C) RQ = volume of O D) None of the above	² evolved/volume o	f CO ₂ consumed		
101.	C) RQ = volume of O D) None of the above What will be the RQ f	² evolved/volume o	f CO ₂ consumed		(Pg 236, M)
101.	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 -$	For the following equ $\rightarrow 102 \text{ CO}_2 + 98 \text{ H}_2\text{CO}_2$	f CO ₂ consumed action P + Energy		(Pg 236, M)
101.	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$	for the following equ $\rightarrow 102 \text{ CO}_2 + 98 \text{ H}_2\text{C}$ B) 1	f CO ₂ consumed nation P + Energy C) 0.8	D) 0.7	(Pg 236, M)
101. 102.	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if protein	for the following equ $\rightarrow 102 \text{ CO}_2 + 98 \text{ H}_2\text{C}$ B) 1 s are used as a respination of the following equilibrium of the fol	f CO ₂ consumed ation + Energy C) 0.8 ratory substrate?	D) 0.7	(Pg 236, M) (Pg 236, E)
101. 102.	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1	for the following equ $\rightarrow 102 \text{ CO}_2 + 98 \text{ H}_2\text{C}$ B) 1 s are used as a respiration B) 0.8	f CO ₂ consumed nation () + Energy (C) 0.8 ratory substrate? (C) 0.9	D) 0.7 D) 0.7	(Pg 236, M) (Pg 236, E)
101. 102. 103.	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if protein A) 1 What is RQ if carbohy	for the following equ $\rightarrow 102 \text{ CO}_2 + 98 \text{ H}_2\text{C}$ B) 1 s are used as a respination of the state of	f CO ₂ consumed nation + Energy C) 0.8 ratory substrate? C) 0.9 respiratory substrat	D) 0.7 D) 0.7 te?	(Pg 236, M) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1	for the following equ $\rightarrow 102 \text{ CO}_2 + 98 \text{ H}_2\text{C}$ B) 1 s are used as a respination of the state of	f CO ₂ consumed ation () + Energy (C) 0.8 ratory substrate? (C) 0.9 respiratory substrat (C) 0.7	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if protein A) 1 What is RQ if carbohy A) 1 Match the following-	for the following equ $\rightarrow 102 \text{ CO}_2 + 98 \text{ H}_2\text{C}$ B) 1 s are used as a respination of the state of	f CO ₂ consumed aation 0 + Energy C) 0.8 ratory substrate? C) 0.9 respiratory substrat C) 0.7	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
101. 102. 103. 104.	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺	for the following equ \rightarrow 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respination of the following equ \rightarrow 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respination of the following equ b) 1 i) 1 ATP ii) 2 ATP	f CO ₂ consumed aation 9 + Energy C) 0.8 ratory substrate? C) 0.9 respiratory substrat C) 0.7	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 	C) RQ = volume of O2 D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2	i) 1 ATP ii) 2 ATP	f CO ₂ consumed aation 9 + Energy C) 0.8 ratory substrate? C) 0.9 respiratory substrat C) 0.7	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 	C) RQ = volume of O: D) None of the above What will be the RQ ff $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP	For the following equ \rightarrow 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respination b) 0.8 vdrates are used as a B) 0.8 i) 1 ATP ii) 2 ATP iii) 3 ATP	f CO ₂ consumed ation (c) 0.8 ratory substrate? (c) 0.9 respiratory substrat (c) 0.7	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 	C) RQ = volume of O ₂ D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP A) 1-i, 2-ii, 3-iii	2 evolved/volume o 2 evolved/volume o 4 for the following equ → 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respir B) 0.8 7 drates are used as a B) 0.8 i) 1 ATP ii) 2 ATP iii) 3 ATP	<pre>b) 1-i, 2-iii, 3-ii</pre>	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 	C) RQ = volume of O: D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP A) 1-i, 2-ii, 3-iii C) 1-iii, 2-ii, 3-i	for the following equ \rightarrow 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respination of the following equ \rightarrow 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respination of the following equ b) 0.8 vdrates are used as a respination of the following equ (b) 1 ATP ii) 1 ATP iii) 2 ATP iii) 3 ATP	 b) CO₂ consumed f CO₂ consumed ation + Energy C) 0.8 ratory substrate? C) 0.9 respiratory substrat C) 0.7 B) 1-i, 2-iii, 3-ii D) 1-ii, 2-i, 3-iii 	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 105. 	C) RQ = volume of O ₂ D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP A) 1-i, 2-ii, 3-iii C) 1-iii, 2-ii, 3-i In ETS O ₂ accept the e	2 evolved/volume o for the following equ → 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respir B) 0.8 ydrates are used as a B) 0.8 i) 1 ATP ii) 2 ATP iii) 3 ATP	f CO ₂ consumed f CO ₂ consumed ation () + Energy (C) 0.8 ratory substrate? (C) 0.9 respiratory substrat (C) 0.7 B) 1-i, 2-iii, 3-ii (D) 1-ii, 2-i, 3-iii luced to which of the	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 105. 	C) RQ = volume of O: D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP A) 1-i, 2-ii, 3-iii C) 1-iii, 2-ii, 3-i In ETS O ₂ accept the e	for the following equ \rightarrow 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respination b) 0.8 vdrates are used as a B) 0.8 i) 1 ATP ii) 2 ATP iii) 3 ATP electrons and get red	 b) Carbon diavida b) Carbon diavida 	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 105. 	C) RQ = volume of O ₂ D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP A) 1-i, 2-ii, 3-iii C) 1-iii, 2-ii, 3-i In ETS O ₂ accept the e	2 evolved/volume o for the following equ → 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respir B) 0.8 ydrates are used as a B) 0.8 i) 1 ATP ii) 2 ATP iii) 3 ATP 2 evolved/volume o H = 0 H = 0	 b) CO2 consumed f CO2 consumed ation + Energy C) 0.8 ratory substrate? C) 0.9 respiratory substrate C) 0.7 B) 1-i, 2-ii, 3-ii D) 1-ii, 2-i, 3-iii luced to which of the B) Carbon dioxide D) None of the shore 	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 105. 	C) RQ = volume of O ₂ D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP A) 1-i, 2-ii, 3-iii C) 1-iii, 2-ii, 3-i In ETS O ₂ accept the e A) Water C) Palmitic acid What is the final end	2 evolved/volume o for the following equ → 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respinent B) 0.8 vdrates are used as a B) 0.8 i) 1 ATP ii) 2 ATP iii) 3 ATP electrons and get red	 b) Color Color	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 105. 106. 	C) RQ = volume of O ₂ D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP A) 1-i, 2-ii, 3-iii C) 1-iii, 2-ii, 3-i In ETS O ₂ accept the e A) Water C) Palmitic acid What is the final end f A) 3 NADH + H ⁺	2 evolved/volume o for the following equ → 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respir B) 0.8 vdrates are used as a B) 0.8 i) 1 ATP ii) 2 ATP iii) 3 ATP electrons and get red product of TCA cycl	 b) CO2 consumed f CO2 consumed i ation + Energy C) 0.8 ratory substrate? C) 0.9 respiratory substrate C) 0.7 B) 1-i, 2-ii, 3-ii D) 1-ii, 2-i, 3-iii luced to which of the B) Carbon dioxide D) None of the above R) 1 ATP 	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E) (Pg 236, E)
 101. 102. 103. 104. 105. 106. 	C) RQ = volume of O ₂ D) None of the above What will be the RQ f $2(C_{31}H_{28}O_6) + 145 O_2 - A) 0.9$ What is RQ if proteins A) 1 What is RQ if carbohy A) 1 Match the following- 1) NADH + H ⁺ 2) FADH2 3) GTP A) 1-i, 2-ii, 3-iii C) 1-iii, 2-ii, 3-i In ETS O ₂ accept the e A) Water C) Palmitic acid What is the final end a A) 3 NADH + H ⁺ C) 1 EADH2	for the following equ \rightarrow 102 CO ₂ + 98 H ₂ C B) 1 s are used as a respination b) 0.8 vdrates are used as a B) 0.8 i) 1 ATP ii) 2 ATP iii) 3 ATP electrons and get red product of TCA cycl	 b) Collection (CO2) evented find (CO2) consumed (CO2) consumed (CO2) consumed (CO2) consumed (CO2) (CO2)	D) 0.7 D) 0.7 te? D) 0.9	(Pg 236, M) (Pg 236, E) (Pg 236, E) (Pg 236, E) (Pg 236, E) (Pg 236, E)

107.	How many AT	Ps are produced	through ETS o	nly from 1 mole	cule of 3-phosph	oglycerate in
	A) 12	B) 14	C)	16	D) 15	g 200, Ej
	ø					
			V1003 11			
1.	What is the ro	le of NAD+ in co	<mark>ellular respir</mark> ati	on?		[2018]
	(a) It functions	s as an enzyme.				
	(b) It functions	s as an electron c	arrier.			
	(c) It is the fina	al electron accep	tor for anaero <mark>b</mark>	ic respiration.		
	(d) It i <mark>s a n</mark> ucle	eotide source for	ATP synthesis	,		
2.	Whi <mark>ch</mark> of these	e statements is i i	ncorrect?			[2018]
	(a) <mark>En</mark> zymes o	f TCA cycle are	present in mito	chondrial matrix	x .	
	(b <mark>) G</mark> lycolysis	occurs in cytoso	1.			
	(<mark>c) O</mark> xidative p	phosphorylation	takes place in o	outer mitochone	lrial membrane.	
	(<mark>d)</mark> Glycolysis	operates as long	; as it is supplie	d with NAD tha	at can pick up hyo	drogen atoms.
3.	P <mark>hos</mark> phoenol I	Pyruvate (PEP) i	s the primary C	CO2 acceptor in		[2017]
	(a) <mark>C</mark> 4 plants	(b) C ₂ plan	nts (c) C	and C ₄ plants	(d) C ₃ plants	
4.	Which stateme	ent is wrong for	Krebs' cycle?			[2017]
	(a) There is on	e point in the cy	cle where FAD	+ is reduced to l	FADH2.	
	(b) During cor	version of succi	nyl CoA to suc	cinic acid, a mol	ecule of GTP is sy	nthesised.
	(c) The cycle s [.] citric acid.	tarts with conde	nsation of acety	vl group (acetyl	CoA) with pyruv	ic acid to yield
	(d) There are t	hree points in th	e cycle where I	NAD+ is reduce	d to NADH + H+	
5.	In which one o	of the following	processes CO2	in not released?		[2014]
	(a) Aerobic res	spiration in plan	ts. (b) A	erobic respirati	on in animals.	
	(c) Alcoholic f	ermentation.	(d) L	actate fermenta	tion.	
6.	Respiratory Q	uotient (RQ) val	ue of tripalmiti	n is :		[NEET-2019]
	(1) 0.9 ((2) 0.7	(3) 0.07	(4) 0.09)	
7.	Conversion of catalyzed by :	glucose to gluco	ose-6-phosphat	e, the first irreve	ersible reaction of	glycolysis, is [NEET-2019]
	(1) Aldolase	(2) Hexol	kinase			
1						

					www.alliantacademy.com
	(3) Enolase	(4) Phosphofruc	tokinase		
8.	Where is respira ODISSA]	atory electron transp	ort system (ETS) lo	ocated in plants ?	[NEET-2019
	(1) Mitochondri	al matrix	(2) Outer mito	ochondrial membr	ane
	(3) Inner mitoch	ondrial membrane	(4) Inte	rmembrane space	
9. COV	Pyruvate dehyd / ID]	rogenase activity du	<mark>ring a</mark> erobic respir	ration requires	[NEET-2020
	(1) Calcium	(2) Iron	(3) Cobalt	(4) Magnesium	
10.	The number of s	substrate level phosp	phorylations in one	turn of citric acid	cycle is [NEET-2020]
	1) Three	2) Zero	3) One		4) Two
11.	Which of the fol	lowing statements is	s incorrec <mark>t</mark> ?		[NEET-2021]
	1) In ETC (Elect: molecules, and o	ron Transport Chain one FADH ₂ gives ris), one mo <mark>lecule of</mark> e to 3 AT <mark>P molecul</mark>	NADH+H+ gives les.	rise to 2 ATP
	2) ATP is synthe	esized through comp	lex V.		
	3) Oxidation-rec	luction reactions pro	duce proton gradi	ent in respiration.	
	4 <mark>) D</mark> uring aerob	ic respiration, role of	f oxygen is limited	to the terminal st	age.
12. 13.	What amount of 1) Approximatel 3) About 10% What is the net	of energy is released y 15% gain of ATP when e	from glucose dur 2) More than 4) Less than 7 each molecule of g	<mark>ing lactic acid fe</mark> 18% % lucose is converte	rmentation? ed to two molecules
	1) Four	2) Six	3) Two	4) Eight	
					17

NCERT LINE BY LINE QUESTIONS – ANSWERS									
1	2	3	4	5	6	7	8	9	10
В	С	А	С	С	С	D	А	А	D
11	12	13	14	15	16	17	18	19	20
D	В	D	D	В	D	В	В	D	D
21	22	23	24	25	26	27	28	29	30
D	D	В	А	А	С	В	С	С	А
31	32	33	34	35	36	37	38	39	40
А	С	В	С	С	D	А	D	В	С
41	42	43	44	45	46	47	48	49	50
В	В	С	D	В	D	С	А	А	D
51	52	53	54	55	56	57	58	59	60
D	D	В	А	В	С	В	В	А	С
61	62	63	64	65	66	67	68	69	70
В	D	С	А	С	В	А	D	С	В
71	72	73	74	75	76	77	78	79	80
С	С	А	С	В	D	С	D	D	С
81	82	83	84	85	86	87	88	89	90
С	В	С	В	D	С	В	В	В	В
91	92	93	94	95	96	97	98	99	100
С	С	А	А	В	D	А	D	С	А
101	102	103	104	105	106	107			
D	С	А	С	А	D	В			

NEET PREVIOUS YEARS QUESTIONS-ANSWERS

1 (b) **2** (c) **3** (a) **4** (c) **5** (d) **6** (2) **7** (2) **8** (3) **9** (4) **10** (3)

11 (1) 12 (4) 13 (3)

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS

- **1. (b)** In cellular respiration, NAD+ act as an electron carrier.
- **2. (c)** Oxidative phosphorylation takes place in inner mitochondrial membrane.
- **3. (a)** In the mesophyll cells cytoplasm of C4 plants like sugarcane, maize, sorghum etc. PEP is 3C Compound which serves as primary CO2 acceptor.
- **4. (c)** Krebs cycle begins with condensation of acetyl CoA (2C) with oxaloacetic acid (4C) to form citric acid (6C).
- **5. (d)** Lactic acid fermentation: It occurs in lactic acid bacteria (*Lactobacillus*) and muscles (Human). Pyruvic acid produced in glycolysis is reduced by NADH₂ to form lactic acid without producing carbon dioxide.

 $\begin{array}{c} \text{CH}_3\text{COCOOH}+\text{NADH}_2 \xrightarrow{\text{Lactate dehydrogenase}} \\ \text{Pyruvic acid} & \text{FMN,Zn}^{2+} \end{array}$

CH3CHOHCOOH+NAD

Lactic acid In citric acid cycle during conversation of succinyl CO.A — succinic acid, one ATP molecule is synthesized by substrate level phosphorylations

11. In ETC –

10.

 $1 \text{ NADH} - 3 \text{ ATP}; 1 \text{ FADH}_2 - 2 \text{ ATP}$

- **12.** Lactic acid fermentation less than 7%
- **13**. In glycolysis the net gain of ATP is 2

Alliant Academy