4. CHEMICAL BONDING AND MOLECULAR

Chemistry Smart Booklet Theory + NCERT MCQs +Topicwise Practice MCQs+ NEET PYQs

www.alliantacademy.com

CHEMICAL BONDING AND MOLECULAR STRUCTURE

Introduction:

Structure and Bonding is the heart of chemistry. Chemical bond is very important to explain the properties and structure of compound. The important aspect of each type of force is its relative strength, how rapidly it decreases with increasing distance and whether it is directional in nature or not.

Chemical Bond:

It is the force of attraction between two atoms which hold them together in a compound or molecule. Nature loves stability and bond formation is associated with stability. Every element has a tendency to occupy inert electronic configuration which is considered as very stable. Noble gas electronic configuration can be achieved by

- 1. Transference of electrons
- 2. Mutual sharing of electrons
- 3. Donation of lone pair of electrons

Types of Bond

In order to explain the formation of a chemical bond in terms of electrons, Lewis postulated that atoms achieve stable octet when they are linked by a chemical bond. On the basis of this chemical bonds are following type:

- 1. Ionic bond
- 2. Covalent bond
- 3. Co-ordinate bond
- 4. Metallic bond
- 5. Hydrogen bond
- 6. van der Waal's bond

Lewis Dot Structures

Valence Electrons: In the formation of a molecule only the outer shell electrons take part in chemical bond combination and they are known as valence electrons. In Lewis symbols, an element is shown with symbol and valence electrons.

Octet Rule

It is proposed by Kossel and Lewis and according to this, "Every atom has a tendency to attain Noble gas electronic configuration or to have 8 valence electrons". This is known as law of octet rule or if it has two valence electrons then this is known as law of duplet. According to Lewis, only those compounds will be stable which follow octet rule.

Formal Charge

Formal charge on an atom is the difference between the number of valence electrons is an isolated atom and the number of electrons assigned to that atom in a Lewis structure. It is expressed as:

Ionic Bond

An ionic bond is formed by complete transference of one or more electrons from the valence shell of one atom to the valence shell of another atom. In this way both the atoms acquire stable electronic configurations of noble gases. The atom which loses electron becomes a positive ion and the atom which gains electron becomes negative ion.

Note: Electrovalency is the number of electrons lost or gained during the formation of an ionic bond or electrovalent bond.

Characteristics of Ionic Compounds:

- 1. They are hard, brittle and crystalline.
- 2. They have high melting and boiling points.
- 3. They are polar in nature.
- 4. The linkage between oppositely charged ions is non rigid and non directional.
- 5. They are soluble in polar solvents such as water and insoluble in non polar solvents such as CCl₄, Benzene, ether etc.
- 6. They are good conductors of electricity in fused state and in solution due to mobility of the ions. They are bad conductors of electricity in solid state because ions are unable to move.

Covalent Bond

A force which binds atoms of same or different elements by mutual sharing of electrons is called a covalent bond. If the combining atoms are same the covalent molecule is known as homoatomic. If they are different, they are known as heteroatomic molecule.

Valence Bond Theory (VBT)

Valence bond theory was introduced by Heitler and London (1927) and developed by Pauling and others. It is based on the concept of atomic orbitals and the electronic configuration of the atoms. Let two hydrogen atoms A and B having their nuclei NA and NB and electrons present in them are eA and eB. As these two atoms come closer new attractive and repulsive forces begin to operate.

- 1. The nucleus of one atom is attracted towards its own electron and the electron of the other and vice versa.
- 2. Repulsive forces arise between the electrons of two atoms and nuclei of two atoms. Attractive forces tend to bring the two atoms closer whereas repulsive forces tend to push them apart.

Orbital overlap concept

If we refer to the minimum energy state in the formation of hydrogen molecule the two H-atoms are enough near so as to allow their atomic orbitals to undergo partial interpenetration. This partial interpenetration of atomic orbitals is called overlapping of atomic orbitals. The overlap between the atomic orbitals can be positive, negative or zero depending upon the characteristics of the orbitals participating to overlap.

Types of overlapping

The covalent bonds can be classified into two different categories depending upon the type of overlapping. These are:

Sigma (o) bond: This type of covalent bond is formed by the axial overlapping of half-filled atomic orbitals. The atomic orbitals overlap along the internuclear axis and involve end to end or head on overlap. There can be three type of axial overlap among s and p-orbitals as discussed below:

i. **s-s overlap:** In this case, there is overlap of two half-filled s-orbitals along the internuclear axis as shown below.

p-orbital *p*-orbital *p*-*p* overlapping

Hybridisation: Hybridisation is the process of intermixing of the orbitals of slightly different energies so as to redistribute their energies, resulting in the formation of new set of orbitals of equivalent energies and shape. The atomic orbitals combine to form new set of equivalent orbitals known as hybrid orbitals.

Salient Features of Hybridisation:

- i. The number of hybrid orbitals is equal to the number of the atomic orbitals that get hybridised.
- ii. The hybridised orbitals are always equivalent in energy and shape.
- iii. The hybrid orbitals are more effective in forming stable bonds than the pure atomic orbitals.
- iv. The type of hybridisation indicates the geometry of the molecules.

Important conditions for hybridisation:

- i. The orbitals present in the valence shell of the atom are hybridised.
- ii. The orbitals taking part in hybridisation must have only a small difference of energies.
- iii. Promotion of electron is not essential condition prior to hybridisation.
- iv. It is not necessary that only half filled orbitals participate in hybridisation.

Types of hybridisation

There are many different types of hybridisation depending upon the type of orbitals involved in mixing such as sp³, sp², sp, sp³d, sp³d² etc.

i. **sp-hybridisation:** In this hybridisation one s and one p orbitals hybridise to produce two equivalent hybrid orbitals, known as sp hybrid orbitals. The two sp-hybrid orbitals are oriented in a straight line making an angle of 180° and therefore the molecule possesses linear geometry. Each of hybrid orbitals has 50% s-character and 50% p-character.

Example of molecules having sp-hybridisation are BeF₂, BeCl₂, BeH₂ etc.

ii. sp²-hybridisation: In this hybridisation one s and one 2p orbitals hybridise to produce three equivalent hybrid orbitals, known as sp² hybrid orbitals. sp² hybrid orbitals are larger in size than sp-hybrid orbitals but slightly smaller than that of sp³ hybrid orbitals. Each sp² hybrid orbitals has 1/3 (or 33.33%) s-character and 2/3 (or 66.7%) p-character. Example, BF₃, BCl₃, BH₃ etc.

iii. sp³d-hybridisation: This type of hybridisation involves mixing of one s, three p and one d-orbitals to form five sp³d hybridised orbitals which adopt trigonal bipyramidal.

Formation of PCI₅: The ground state electronic configuration of phosphorus is $1s^2 2s^2 2p^6 3s^2 3p^3$. Under the conditions of bond formation the 3s-electrons get unpaired and one of the electron is promoted to vacant $3dz^2$ orbital. The ground state and excited state configurations of phosphorus are shown below:

iv. sp³d²-hybridisation: In this type of hybridisation one s, three p and two dorbitals undergo intermixing to form six identical sp³d² hybrid orbitals. These six orbitals are directed towards the corners of an octahedron and lie in space at an angle of 90° to one another.

The ground state outer configuration of 16S is $3s^2$ $3p^4$. In the excited state the electron pairs in 3s and 3px orbitals get unpaired and one out of each pair is promoted to vacant $3dz^2$ and $3dx^2-y^2$ orbitals. The ground state and excited state configuration of 16S are given as follows:

sp³d² hybridisation

Valence Shell Electron Pair Repulsion (VSEPR) Theory

Sidgwick and Powell in 1940, proposed a simple theory based on repulsive character of electron pairs in the valence shell of the atoms. It was further developed by Nyholm and Gillespie (1957). Main Postulates are the following:

- i. The exact shape of molecule depends upon the number of electron pairs (bonded) or non bonded) around the central atoms.
- ii. The electron pairs have a tendency to repel each other since they exist around the central atom and the electron clouds are negatively charged.
- iii. Electron pairs try to take such position which can minimize the rupulsion between them.
- iv. The valence shell is taken as a sphere with the electron pairs placed at maximum distance.
- v. A multiple bond is treated as if it is a single electron pair and the electron pairs which constitute the bond as single pairs.

Bond Parameters:

i. **Bond Angle:** It is the distance between two consecutive crests or troughs and is denoted by λ . It is defined as the angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion. Bond angle is expressed in degree which can be experimentally determined by spectroscopic methods.

ii. **Bond Length:** Bond length is defined as the equilibrium distance between the nuclei of two bonded atoms in a molecule.

- iii. Lattice Enthalpy: The Lattice Enthalpy of an ionic solid is defined as the energy required to completely separate one mole of a solid ionic compound into gaseous constituent ions. For example, the lattice enthalpy of NaCl is 788 kJ mol⁻¹.
- iv. **Bond Order:** Bond order is defined as half of the difference between the number of electrons present in bonding and antibonding molecular orbitals. The bond order may be a whole number, a fraction or even zero. It may also be positive or negative.

Bond order (B.O.) = $\frac{1}{2}$ [Nb – Na]

v. Bond Enthalpy: It is defined as the amount of energy required to break one mole of bonds of a particular type between two atoms in a gaseous state. The unit of bond enthalpy is kJ mol-1. For example, the H – H bond enthalpy in hydrogen molecule is 435.8 kJ mol^{-1.}

Molecular Orbital Theory (MOT)

Molecular orbital (MO) theory was developed by F. Hund and R.S. Mulliken in 1932. According to MOT, a molecule is considered to be quite different from the constituent atoms. All the electrons belonging to the atoms constituting a molecule are considered to be moving along the entire molecule under the influence of all the nuclei. Thus, a molecule is supposed to have orbitals of varying energy levels, in same way as an atom. These orbitals are called molecular orbitals.

Energy Level Diagram for Molecular Orbitals:

Resonance

When light of a suitable frequency is allowed to incident on a metal, ejection of electrons take place. This phenomenon is known as photo electric effect.

When a compound has same molecular formula but different structural formulas and structures differ with respect to electrons only. These structures are known as resonating structures or canonical structures. None of these structures can explain all the properties of that compound. This phenomenon is known as resonance.

Hydrogen Bonding

When highly electronegative elements like nitrogen, oxygen, flourine are attached to hydrogen to form covalent bond, the electrons of the covalent bond are shifted towards the more electronegative atom. Thus, partial positive charge develops on hydrogen atom which forms a bond with the other electronegative atom. This bond is known as hydrogen bond and it is weaker than the covalent bond.

Types of Hydrogen Bonding:

i. There are two types of hydrogen bonding: It is a type of hydrogen bonding between two similar or dissimilar molecules. Example : H - F, HF and water, NH_3 , NH_3 and water, alcohol, alcohol and water etc.

```
H^{\delta_{+}} - X^{\delta_{-}} - - - H^{\delta_{+}} - X^{\delta_{-}} - - - H^{\delta_{+}} - X^{\delta_{-}}
```

ii. Intramolecular hydrogen bonding: It is a type of hydrogen bonding within the molecule. Example : Salicylaldehyde, O-nitrophenol etc.

Applications of Hydrogen Bonding

- i. **State:** Hydrogen bonding may affect the state of a compound. For example, H₂O is liquid at room temperature whereas H₂S is gas. It is due to presence of intermolecular hydrogen bonding between H₂O molecules, which is not present in H₂S molecules.
- ii. **Solubility:** Only those covalent molecules are soluble in water which have tendency to form intermolecular hydrogen bonding with water molecules.
- iii. **Boiling point:** Intermolecular hydrogen bonding increases the boiling point of compound. For example, NH₃ has higher boiling point than PH₃. This is because, there is intermolecular hydrogen bonding in NH₃ but not in PH₃.
- iv. **Density of ice is lower than water:** In ice, hydrogen bonding gives rise to a cage like structure of H–O–H molecules, in which each H–O–H molecule is linked tetrahedrally to four other H–O–H molecule. In this structure, some vacant spaces are formed, which decrease the density of ice.

Metallic Bonding

The force that binds a metal atom to a number of electrons within its sphere of influence is known as metallic bond.

This model could easily explain the following properties of metals:

- i. High electrical conductivity
- ii. High thermal conductivity
- iii. Bright metallic lustre
- iv. Malleability
- v. Ductility
- vi. Tensile strength
- vii. Elasticity

Summary

- 1. **Chemical Bond:** The force of attraction which holds various chemical entities in different species.
- 2. Electrovalent Bond : The attractive force between the oppositely charged ions which comes into existence by the transference of electrons.
- 3. **Electrovalency:** The number of electrons which an atom loses or gains while forming ionic or electrovalent bond.
- 4. **Covalent Bond:** The bond comes into existence by the mutual sharing of electrons by the atoms participating in bonding.
- 5. Valence Bond Approach of Covalent Bond: The bond is formed by the overlapping of halffilled atomic orbitals having electrons with opposite spins.
- 6. **Covalency:** The number of half-filled atomic orbitals which an atom provides for participation in overlapping at the time of bonding.
- 7. **Dative Bond or Co-ordinate Bond:** The bond is formed by sharing of electrons in which the shared pair of electrons is contributed by one of the atom called donor while the other atom is called acceptor.
- 8. **Hybridisation:** The process of mixing or merging of orbitals (of slightly different energies) of an atom to form another set of orbitals with equivalent shape and energy.
- 9. **Geometry of the Molecule:** The definite relative arrangement of the bonded atoms in a molecule.
- 10. **Regular and Irregular Geometry:** The molecule is said to possess regular geometry if the repulsive interactions among the electron pair around the central atom are of equal magnitude. If the repulsive interactions among the electron pairs are unequal, the geometry is referred to as irregular.
- 11. **Electronegativity:** The power of an atom to attract bonding pair of electrons towards itself.

- 12. **Dipole Moment (\mu):** A vector quantity defined by the product of charge developed on any of the atom and distance between the atoms; creating a dipole.
- 13. **Polar and Non-Polar Molecules:** The molecules with dipole moment (μ) > 0 are called polar molecules while those with μ = 0 are non-polar molecules.
- 14. **Dipole-Dipole Interactions:** The attractive interactions among the opposite ends of polar molecules in liquid and solid state.
- 15. **Hydrogen Bond:** The electrostatic force of attraction between covalently bonded H-atom of one molecule and the electronegative atom (F or N or O) of the other molecule.
- 16. **Resonance:** When a molecule is represented by more than one electronic arrangement none of which is able to explain the observed characteristics of the molecule, then the actual structure is intermediate of various electronic arrangements and is known as resonance hybrid. The various electronic arrangements are called resonating structures or canonical structure.
- 17. **Molecular Orbital Theory (MOT):** According to this theory, in molecules the electrons are present in new orbitals called molecular orbitals. Molecular orbitals are not associated with a particular atom but belong to nuclei of all the atoms constituting the molecule.
- 18. **LCAO Method:** This is an approximate method, according to which the molecular orbitals are obtained by linear combination of atomic orbitals.

NCERT LINE BY LINE QUESTIONS

04. CHEMICAL BONDING AND MOLECULAR STRUCTURE

(1.)	Which of the 117]	e following statements is	correct regar	ding strength of sigma and pi bond [Page:
(a.)	Overlappi in small ex	ng in sigma bond take <mark>s pl</mark> tent.	ace (b.)	Overlapping in pi bond takes place in large extent.
(c.)	Overlappi in large ext	ng in <mark>sigma</mark> bond takes pl ent.	ace (d.)	None of these
(2.) [Page	Some statem : 108] (I) Dipole m	nents regarding dipole mo oment is usually expresse	oment are g <mark>iv</mark> d in Debye u	en below. Identify the correct statements. unit.
	(III) It is a sea (III) It is the positive and	product of the magnitud negative charge.	e of t <mark>he char</mark>	ge and the distance between the centres of
(a.)	I and II		(b.)	II and III
(c.)	I and III		(d.)	I, II and III
(3.) (a.) (c.)	If the electrony involved in $a^{3}p^{6}$ $3p^{6}, 3d^{2}$	onic configuration of an chemical bond formation	n element is will be [NCE (b.) (d.)	$[1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{2}4s^{2}, \text{ the four electrons}]$ $[ERT Exemplar, Page: 105]$ $[3p^{6}, 4s^{2}]$ $[3d^{2}, 4s^{2}]$
(4.)	Pol <mark>ari</mark> ty in a of the constit moment) [N	molecule and hence the tuent atoms and shape of a CERT Exemplar, HOT, P	dipole mom a molecule. W a ge: 105]	ent depends primarily on electronegativity Which of the following has the highest dipole
(a.)	CO ₂		(b.)	ні
(c.)	H ₂ O		(d.)	SO ₂
(5.)	Match the xe code. [NEET	non compound in columr -2019, HOT, Page: 120]	n I with its st	ructure in column II and assign the correct
	Column I	Column II		
	$(\mathbf{D})\mathbf{Y}_{\mathbf{P}}\mathbf{F}$	(i) Duramidal		

$(P)XeF_4$	(i) Pyramidal
$(Q)XeF_6$	(ii) Square planar
(R)XeOF ₄	(iii) Distorted octahedral
(S)XeO ₃	(iv) Square pyramidal

- (a.) P-(i), Q-(ii), R-(iii), S-(iv)
- (c.) P- (ii), O-- (iii), R-(i), S- (iv)

- (b.) P-(ii), Q- (iii), R- (iv), S-(i)
- (d.) P- (iii), Q- (iv), R-(i), S- (ii)

(6.) The sum of lone pair of electrons present in the molecule of NH_3 and NF_3 is/are [Page: 104]

(a.) one

(b.) two

(c.)	three	(d.)	zero.			
(7.)	What is bond order of He ₂ and O_2 respectively. [Page: 126]					
	(a.) 2 and 0	(b.)	2 and 2			
	(c.) 1 and 2	(d.)	0 and 2			
(8.)	Select the pair of molecules which has	s tetrahedral m	nolecular geometry [Page: 111]			
(a.)	PCl _e and SF _e	(b.)	CH, and NH ^{$+$}			
(c)	SP. and BrF	(d)	CIP and H Ω			
(c.)	Sr ₄ and Drr ₅	(u.)	Ch ₃ and H ₂ O			
(9.)	The bond angles of NH_3 , CH_4 and H_2C	O molecules a	re [Page: 110]			
(a.)	109.5°, <mark>107</mark> ° and 104.5° respectively.	(b.)	$107^{\circ}, 109.5^{\circ}$ and 104.5° respectively.			
(c.)	104 <mark>.5°,1</mark> 07° and 109.5° respectively.	(d.)	109.5°,104.5° and 107° respectively.			
(10)	Some statements regarding formal ch	arge are give	helow Identify the correct statement(s)			
(10.)	[Page: 100]	large are given	to below. Identify the context statement(s).			
(I) For	rmal charges do not indicate real charg	e sepa <mark>ration</mark> w	vithin the molecule.			
(II) Fo	Drmal charges help in the selection of Lewis structures for a given species	the lowest en	ergy structure from a number of possible			
(III) Iı	polyatomic ions, it is feasible to assign	n a formal cha	rge on eac <mark>h atom.</mark>			
(a.)	I only	(b.)	II and III			
(c.)	I and III	(d.)	I, II and III			
(11.)	What is the factor responsible for the	zero overlap?	[Page: 117]			
(a.)	Out of phase due to different orienta	ation (b.)	Out of phase due to same orientation			
	dir <mark>ec</mark> tion of approach.		direction of approach.			
(c.)	In phase due to different orientation	n (d.)	In phase due to same orientation			
	direction of approach.		direction of approach.			
(12.)	Select the pair of molecule which has	the same type	of hybridisation. [Page: 118]			
(a.)	BCl_3 and C_2H_6	(b.)	C_2H_2 and $BeCl_2$			
(c.)	C_2H_4 and CH_4	(d.)	NH_3 and C_2H_2			
(13)	Which of the following statements i	s not correct	from the viewpoint of molecular orbital			
(10.)	theory. [NCERT Exemplar, Page: 126]		from the viewpoint of molecular oronan			
(a.)	Be_2 is not a stable (b.) He	$_{2}$ is not stable	but He_2^+ is expected to exist.			
	molecule.					
(c.)	Bond strength of N_2 is (d.) The	e order of ener	rgies of molecular orbitals in N_2			
	homonuclear diatomic	lecules is $\pi^{*2} < \pi^{2}n$	$(\pi^{2}n - \pi^{2}n) < (\pi^{*}n - \pi^{*}n) < (\pi^{*}n)$			
	molecules belonging to	$S < 0^{-2}S < 0^{-2}p_z$	$= \langle (\pi 2 \mathbf{p}_{\mathbf{x}} - \pi 2 \mathbf{p}_{\mathbf{y}}) \rangle \langle (\pi 2 \mathbf{p}_{\mathbf{x}} - \pi 2 \mathbf{p}_{\mathbf{y}}) \rangle \langle 0 \rangle 2 \mathbf{p}_{\mathbf{z}}$			
	the second period.					
(14.)	Identify the molecule which has one l	one pair of ele	ectrons, tetrahedral geometry and trigonal			
、 /	pyramidal shape. [Page: i i3]	1				

(a.)	SP_4	(b.)	BrP ₅
(c.)	PCl ₅	(d.)	NH ₃
(15.)	Select the correct statement. [Page: 99]		
(a.)	In NF_3 and CO_3^2 , nitrogen and fluorine	(b.)	In NF_3 and CO_3^2 , nitrogen and carbon
	are the central atoms whereas carbon		are the central atoms whereas fluorine
	and oxygen occupy the terminal		and oxygen occupy the terminal
	positions.		positions.
(c.)	In NP ₃ and CO_3^2 , fluorine and oxygen are	(d.)	In NF ₃ and CO_3^2 , nitrogen and oxygen
	the central atoms whereas nitrogen and		are the central atoms whereas fluorine
	carbon occupy the terminal positions.		positions.
			p comeros.
(16.)	The direction of the C-H bond cannot be asc	ertaine	d because [Page: 116]
(a.)	the <mark>2s</mark> orbital of carbon and the ls orbital	(b.)	the ls orbital of carbon and the 2 <i>s</i> orbital
	of H are spherically symmetrical and		of H are spherically symmetrical and
(a)	they can overlap in any direction.	(4)	the 2s orbital of carbon and the 2s orbital
(C.)	of H are spherically symmetrical and	(u.)	of H are spherically symmetrical and
	they can overlap in any direction.		they can overlap in any direction.
<i></i>			
(17.)	Which of the following will be the strongest	bond?	[Page: 103]
(a.)	О-Н	(b.)	N-H
(c.)	0-CH	(d.)	F=O
(18.)	Some statements regarding octet theo	ory ar	e given below. Identify the correct
、	sta <mark>tem</mark> ent(s). [Page: 99]	5	0
	(I) This theory does not account for the shap	e of mo	olecules.
	(II) It does not explain the relative stability of (III) This theory is totally silent about the en-	of the m	a molecule
(2)	II only	(h)	Land III
(c.)	II and III	(d)	L II and III
(0.)	ii uitu iii	(u.)	i, ii ulu lii
(19.)	In <i>sp</i> hybridisation [page: 118]		
(a.)	50% s – character and $50\% \% p$ –	(b.)	25% s-character and 75% p-character
	character		
(c.)	75% s-character and 25% p-character	(d.)	40% s-character and 60% p-character
(20)		•1 тт	1 1 1 1 1 1 1 1
(20.)	Assertion: O_2 molecule is paramagnetic with Baseson : Band and an of O_2 molecule is true	$He H_2$	hand and an of U. malanda is and Inagen
	Reason: Bond order of O_2 molecular is two 1261) while	bond order of H_2 molecule is one. [page:
(2)	Both A and R are true and R is the	(h)	Both A and R are true but R is not the
(a.)	correct explanation of A.	(0.)	correct explanation of A.
(c.)	A is true but R is false.	(d.)	Both A and R are false.
~ /		~ /	
(21.)	Some molecules are given below: [Page: 111]] SO ₂ , N	$\mathrm{NH}_3,\mathrm{H}_2\mathrm{O},\mathrm{SP}_4,\mathrm{ClP}_3,\mathrm{BrP}_5,\mathrm{XeF}_4$

How many of them have two lone pair of electrons?

www.alliantacademy.com

(a.)	Two	(b.)	Three
(c.)	Four	(d.)	Five
(22.)	As per VSEPR theory, the pairs of electrons 109]	tend to	o occupy such position in space that [page:
(a.)	minimise repulsion and thus maximise distance between them.	(b.)	maximise repulsion and thus maximise distance between them.
(c.)	minimise repulsion and thus minimise distance between them.	(d.)	maximise repulsion and thus minimise distance between them.
(23.)	The molecular orbitals are filled in accordan	ice with	1 the [Page: 122]
(a.)	aufbau principle.	(b.)	Pauli's exclusion principle.
(c.)	Hund's rule.	(d.)	All of these.
(24.)	N_a and N_b denoted for number of electrons present in bonding, then select correct optio	s preser n for st	nt in antibonding and number of electrons able molecule. [page: 125]
(a.)	$N_b < N_a$	(b.)	$N_a = N_b$
(c.)	$N_a < N_b$	(d.)	None of these
(25.)	Assertion: In NH_3 , N is sp ³ hybridised but be Reason: Shape of NH_3 molecule is trigonal p	ond anş oyrami	<mark>gle is 107°.</mark> dal. [Page: 110]
(a.)	Both A and R are true and R is the correct explanation of A.	(b.)	Both A and R are true but R is nor the correct explanation of A.
(c.)	A is true but R is false.	(d.)	Both A and R are false.
(26.)	What is the bond angle in the molecule of B	eCl ₂ [P	age: 119]
(a.)	60°	(b.)	90°
(c.)	120°	(d.)	180°
(27.)	Overlapping of atomic orbitals depends upc	on [Pag	e: 114]
(a.)	the sign (phase) of orbital wave function in space.	(b.)	direction of orientation of amplitude of orbital wave function in space.
(c.)	both a and b.	(d.)	none of these.
(28.)	How many lone pairs of electrons are preser	nt in SF	⁷ ₄ molecule [Page: 112]
(a.)	One	(b.)	Two
(c.)	Three	(d.)	Four
(29.)	Which of the following pairs of molecules ha	as expa	nded octet) [Page: 101]
(a.)	SP_6, H_2O	(b.)	H_2SO_4 , Li Cl
(c.)	PF_5 and SF_6	(d.)	CO_2 and PF_5
(30.)	Select the correct order of increasing bond le	ngth of	C=C, C-C, C-O and C-H. [Page: 103]

www.alliantacademy.com

(a.)	C - O < C - H < C - C < C = C	(b.)	C-C < C=C < C-O < C-H			
(c.)	C-H < C=C, C-O < C-C	(d.)	C-H < C-O < C-C < C=C			
(31.)	Net dipole moment (l) of water molecule (H_2O) is 1.85 D. Its values in Cm is equal to [Pag					
	108]		20			
(a.)	1.35×10^{-50} Cm	(b.)	8.33×10 ⁻³⁰ Cm			
(c.)	6.17×10^{-30} Cm	(d.)	5.21×10^{-30} Cm			
(32.)	Which of the following molecules/ions is d	iamagn	etic in nature. [Page: 126]			
(a.)	O_2^2	(b.)	O ₂			
(c.)	O ₂	(d.)	O_2^+			
(33.)	Valence bond theory is based on the knowl	edge of	the following: [page: 113]			
	(I) Atomic orbitals					
	(II) Electronic configurations of elements (III) The overlapping criteria of atomic orbi	tals				
	(IV) Principles of variation and superposition	on				
	Select the correct option.					
(a.)	II and III are correct.	(b.)	III and IV are correct.			
(c.)	I and III are correct.	(d.)	I, II, III and IV are correct.			
(34.)	Nyholm and Gillespie refined the VSEPR m	nodel by	explaining that [Page: 109]			
(a.)	the lone pair electrons in a molecule	(b.)	the lone pair of electrons in a molecule			
	occupy more space as compared to the bonding pairs of electrons.	. ,	occupy less space as compared to the bonding pairs of electrons.			
(c.)	t <mark>he l</mark> one pair and bond pair in a molecule occupy the same space.	(d.)	None of these.			
()						
(35.)	Which of the following pairs of species has	identica	al bond order? [Page: 105]			
(a.)	N_2 and O_2	(b.)	P_2 and N_2			
(c.)	N ₂ and HCl	(d.)	N ₂ and CO			
(36.)	Dipole moment defined as the [Page: 107]					
(a.)	product of the magnitude of the charge and the distance between the centres of positive and positive charge.	(b.)	product of the magnitude of the charge and the distance between the centres of negative and negative charge.			
(c.)	product of the magnitude of the charge and the distance between the centres of positive and negative charge.	(d.)	product of the magnitude of the resistance and the distance between the neutral nuclei.			
(37.)	Assertion: Dipole moment of NH ₃ is greate	r than t	hat of NP ₃ .			
	Reason: Nitrogen is more electronegative the	han fluc	orine. [Page: 108]			
(a.)	Both A and R are true and R is the correct explanation of A.	(b.)	Both A and R are true but R is not the correct explanation of A.			
(c.)	A is true but R is false.	(d.)	Both A and R are false.			

(38.)	Some statements regarding bond angle are given be10w. Identify the correct statement(s). [Page: 104] (I) Bond angle is the angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion. (II) Bond angle is expressed in degrees which can be experimentally determined by spectroscopic methods.					
	(IV) Bond angle gives some idea regarding to in a molecule/complex ion.	he distr	ibution of orbitals around the central atom			
(a.)	III only	(b.)	L II and IV			
(c.)	I, II, III and IV	(d.)	I and III			
(39.)	The types of hybrid orbitals of nitrogen in N	$10^+_2, NO$	$_{3}$ and NH $_{4}^{+}$ respectively are expected to be			
[NCE	RT Exemplar, Page: 120]					
(a.)	sp, sp ³ and sp ²	(b.)	sp, sp^2 and sp^3			
(c.)	sp ² , sp and sp ³	(d.)	sp ² , sp ³ and sp			
(40.)	Two statements for polarity of bonds are giv (I) The existence of a 100% ionic or covalent (II) In reality no bond or a compound is eith The given statements I and II are true or false	ven belo bond re er comp	w: [Page: 105] epresents an ideal situation. eletely covalent or ionic.			
(a.)	FF Alliant A	(b.)	TT			
(c.)	TF A	(d.)	FT			
(41.)	According to VSEPR Theory, the shape of a shell electron pairs [page: 109]	a molec	ule depends upon the number of valence			
(a.)	bo <mark>nde</mark> d electron pair only.	(b.)	non-bonded electron pair only.			
(c.)	bonded or non-bonded electron pair.	(d.)	neither bonded nor non-bonded electron pair.			
(42.)	Two statements regarding SP ₄ molecule are	given b	elow. Identify the correct statements with			
、 ,	respect to more stable structure. [Page: 113]	0				
	(I) If lone pair of electrons present at axial p	osition (hen molecule is more stable.			
	(II) If lone pair of electrons present at equate	orial pos	sition then molecule is less stable.			
(a.)	Only I	(b.)	Only II			
(c.)	Both I and II	(d.)	Neither I nor II			
(43.)	What is the bond order of H_2 molecule [Page	ge: 125]				
(a.)	One	(b.)	Two			
(c.)	Three	(d.)	Zero			
(44.)	Ionic bonds will be formed more easily [Pag	e: 102]				
(a.)	between elements with comparatively low ionisation enthalpies and elements	(b.)	between elements with comparatively high ionisation enthalpies and elements			

	with comparatively high negative value of electron gain enthalpy.	(1)	with comparatively low negative value of electron gain enthalpy.
(C.)	between two elements which consist of low ionisation enthalpy and electron gain enthalpy.	(d.)	between two elements which consist of high ionisation enthalpy and electron gain enthalpy.
(45.)	Assertion: SF ₄ molecule has see-saw shape.		
	Reason: Two lone pair of electrons are prese	ent in S	F ₄ molecules. [Page: 113]
(a.)	Both A and R are true and R is the correct explanation of A.	(b.)	Both A and R are true but R is nor the correct explanation of A.
(c.)	A is true but R is false.	(d.)	Both A and R are false.
(46.)	Which molecule/ion out of the following do	oes not	contain unpaired electrons [Page: 126]
(a.)	N_2^+	(b.)	O ₂
(c.)	O_2^{2-}	(d.)	B ₂
(1 -)			
(47.)	What is the hybridisation of a molecule whi	ch has	square planar shape [Page: 120]
(a.)	dsp ²	(b.)	sp ³ d
(c.)	sp ³ d ²	(d.)	sp ³
(48.)	The dipole moment of HP may be represent	ed as:	Page: 108]
	$\overrightarrow{H-\overrightarrow{F}}$: This arrow symbolises the direction of the s	hift of	idemy
(a.)	proton density in the molecule.	(b.)	electron density in the molecule.
(c.)	neutron density in the molecule.	(d.)	proton and neutron densities in the
()	5	()	molecule.
(49.)	Some conditions for the combination of ator	nic orb	itals are given below: [Page: 122]
(I) The	e combining atomic orbitals must have the sa	ime or i	nearly the same energy.
(II) Th	e combinin <mark>g atomic</mark> orbitals must have the s	ame sy	mmetry about the molecular axis.
(III) I Select	the correct statement(s).	o the m	aximum extent.
(a.)	Only I	(b.)	Only III
(c.)	I and III	(d.)	I, II and III
(50.)	Bond length is defined as the equilibrium di a molecule and it is measured by [Page: 103]	stance	between the nuclei of two bonded atoms in
(a.)	spectroscopic technique.	(b.)	X-ray diffraction technique.
(c.)	electron-diffraction technique.	(d.)	all of these.

TOPIC WISE PRACTICE QUESTIONS

TOPIC 1: Electrovalent, Covalent and Coordinate Bonding

1.	Which of the following combination will form an	electrovalent bond ?	
	1) P and Cl $\stackrel{\sim}{2}$ NH ₃ and BF ₃ $\stackrel{\sim}{3}$ H	and Ca	4) H and S
2.	Which has a giant covalent structure?		
	1) PbO_2 2) SiO_2 3) N	aCl	4) AlCl ₃
3.	Which one of the following contains a co-ordinate	e covalent bond ?	
	1) H_2O 2) HCl 3) B_3	aCl_2	4) $N_2 H_5^+$
4.	The number of dative bonds in sulphuric acid mol	ecule is	
~	1) 0 2) 1 3) 2		4) 4
5.	Which of the following statements is not true about 1) They may avhibit another isometrism	it covalent compounds?	d hailing naints
	3) They show ionic reactions (4) The	ev show molecular reac	a bonnig points
6.	Indicate the nature of bonding in CCl ₄ and CaH ₂	icy show morecular reac	
0.	1) Covalent in CCl ₄ and electrovalent in CaH ₂	2) Electrovalent in bo	oth CCl_4 and CaH_2
	3) Covalent in both CCl ₄ and CaH ₂	4) Electrovalent in C	Cl4 and covalent in CaH2
7.	Lattice energy of an ionic compound depends upo	n	
	1) charge on the ion and size of the ion	2) packing of ions on	ly
0	3) size of the ion only	4) charge on the 10n of	only
δ.	Among the following which compound will show	The highest lattice energy	sy ?
9	The compound that has the highest ionic character	r associated with the X–	-Cl bond is:
۶.	1) PCl ₅ 2) BCl ₃ 3) C	Cl4	4) SiCl ₄
10.	Which combination of atoms can form a polar cov	valent bond?	
	1) H and H 2) H and F 3) N	and N	4) Na and F
11.	Which of the following pairs will form the most s	table ionic bond ?	
10	1) Na and Cl 2) Mg and F 3) Li	and F	4) Na and F
12.	In which of the following species central atom is 1	NOT surrounded by example Ω^{1+}	4) SE
12	1) BF_4 2) NC_{13} 3) F_4	اں 1 1 - 2	4) 564
15.	1) Overlapping valence orbitals	DONU ?	
	3) Delocalized electrons 4) H	ighty directed bonds.	
14.	Which set contains only covalently bonded molec	ules?	
	1) BCl3, SiCl4, PCl3 2) NH4 Br, N2H4, HBr	3) I ₂ , H ₂ S, NaI	4) Al, O ₃ , As ₄
15.	Amongst LiCl, RbCl, BeCl ₂ and MgCl ₂ the comp	ounds with the greatest a	and the least ionic character,
	respectively are:		
16	1) L1Cl and RbCl 2) RbCl and BeCl ₂ 3) M	gCl_2 and $BeCl_2$ 4) RbCl	and MgCl ₂
10.	1) By the energy released in the formation of crys	tal lattice	
	2) By achieving octet of electrons around the ioni	c species in gaseous stat	e.
	3) By electron gain enthalpy and the ionization en	thalpy.	
	4) None of these		
17.	Which of the following statement is correct?		
	1) FeCl ₂ is more covalent than FeCl ₃ . 2) F	eCl_3 is more covalent the r_1	han FeCl_2 .
	3) Both FeU12 and FeU13 are equally covalent. 4) I	recl ₂ and Fecl ₃ do not h	have any covalent character.
	TOPIC 2. Octat Rula Resonance I)inale Mamont er	nd Rond Polarity
18	A pair of compounds which has odd electrons in t	he group NO CO $C10_{\circ}$	N $_{2}O_{5}$ SO and O are
10.	1) NO and ClO_2 2) CO and SO ₂	3) ClO ₂ and CO	4) SO ₂ and O ₃

19. Which of the following molecule(s) obey the octet rule?

	(i) [BF ₄] ⁻ , (ii) [AlCl ₄] ⁻ , (iii) S	SO_2 , (iv) CCl_4		
20	1) (i), (ii), (iii), (iv) In the cyanide ion the form:	2) (ii), (iii), (iv) Il negative charge is or	(1), (11), (11)	(1), (1), (1), (1)
20.	1) C	2) N	3) Both C and N 4) re	esonate between C and N
21.	Among the following, the sp	ecies having the small	est bond order is	
	1) NO ⁻	2) NO ⁺	3) O ₂	4) NO
22.	The bond length of $C = O$ be $CO_3^{2^-}$ will be	ond in CO is 1.20 Å an	d in CO ₂ it is 1.34 Å. T	Then $C = O$ bond length in
AND]	1) 1.50 Å MOLECULAR STRUCTURI	2) 1.34 Å 3) 1.2 E 53	9 Å	4) 0.95 Å
23.	Which one of the following	pairs of molecules will	have permanent dipol	e moments for both members ?
24.	1) NO ₂ and CO ₂ Which of the following struc	2) NO ₂ and O ₃ 3) SiF sture represents structu	4 and CO ₂ re of O ₃ more accurate	4) SiF ₄ and NO ₂ ly?
		St OXA		
	т			
		3		
	N/ N	×.		
	П	Ŭ		
	1) I and III only 2) II a	nd III only 3) I ar	nd II only 4) All	
25.	Which of the following salt	shows maximum coval	ent character?	
	1) AlCl ₃ 2) Mg	Cl_2 3) Cs(Cl 4) LaC	Cl ₃
26.	Pauling's electronegativity v	alues for elements are	useful in predicting :	C1 1
	1) polarity of bonds in molec	$\begin{array}{c} \text{cules} & 2 \text{) ion} \\ 1 \text{ bot} \end{array}$	1c and covalent nature (b, 1) and 2)	of bonds
27	The molecule which has zero	a dipole moment is	II 1) aliu 2)	
- / .	1) CH ₃ Cl	2) NF ₃	3) BF ₃ 4) ClO	\mathbf{D}_2
28.	Which bond angle q would r	esult in the maximum	dipole moment for the	triatomic molecule YXY
	1) $q = 90^{\circ}$	2) $q = 120^{\circ}$	3) $q = 150^{\circ}$	4) $q = 180^{\circ}$
29.	Polarisibility of halide ions	increases in the order		
20	1) F^- , I^- , Br^- , CI^-	2) CI^- , Br^- , I^- , F^-	3) Γ^- , Br^- , C	$CI^{-}, F^{-} = 4) F^{-}, CI^{-}, Br^{-}, I^{-}$
30.	none assumes linear structu	re instead of bent struc	cture for water, then wr	lich one of the following
	1) The formation of intermo	lecular hydrogen bond	in water.	
	2) The high boiling point of	water.		
	3) Solubility of polar compo	unds in water.		
	4) Ability of water to form c	oordinate covalent bon	ıd.	
	TOPIC 3: VSE	PR Theory, VB	Г Theory and Hy	bridization
31.	The angle between the overl 1) 180° 2) 120	apping of one <i>s</i> -orbital	and one <i>p</i> -orbital is 3) $109^{\circ}28'$	4) 120° 60'
32.	Equilateral shape has		0) 103 20	.) 120 00
	1) <i>sp</i> hybridisation 2) <i>sp</i>	² hybridisation	3) sp^3 hybridisation	4) None of these
33.	Which one of the following	has the shortest carbon	-carbon bond length ?	
24	1) Benzene 2) Eth	ene	3) Ethyne	4) Ethane
34.	w nich of the following is the 1) $\text{IF}_7 < \text{IF}_5 < \text{CIF}_5 < \text{Y}_{\text{P}}\text{F}_5$	e correct increasing or 2) IF-	Let of ione pair of elect $< X_{e}F_{2} < CIF_{2} < IF_{2}$	trons on the central atom?
	3) $IF_7 < CIF_3 < XeF_2 < IF_5$	4) IF ₇	$< XeF_2 < CIF_2 < IF_5 < CIF_2$	
	, <u></u>	.,,	2 5 212 5	

35.	In which one of the following molecules the	e central atom is said	to adopt sp^2 hybridization?				
•	1) BeF_2 2) BF_3	3) C_2H_2	4) NH ₃				
36.	Which of the following two are isostructura		$(2) = (2)^{-2} = (2)^{-2}$				
	1) NH ₃ , BF ₃ 2) PCI ₅ , ICI ₅	3) XeF_2 , IF_2	4) CO_3^{-}, SO_3^{-}				
37.	The decreasing values of bond angles from	NH3 (106°) to SbH3	(101°) down group-15 of the periodic				
	table is due to						
	1) decreasing <i>bp-bp</i> repulsion	2) decreasing electr	onegativity				
	3) increasing <i>bp-bp</i> repulsion	4) increasing <i>lp-bp</i>	repulsion				
38.	The shape of ClO ₃ - ion according to Valen	ce Shell Electron Pai	r Repulsion (VSEPR) theory will be				
• •	1) planar triangular 2) pyramidal	3) tetrahedral	4) square planar				
39.	Which of the following molecules has trigo	onal planar geometry?					
10	1) BF ₃ 2) NH ₃	3) PCI ₃	$4) \text{ IF}_3$				
40.	Linear combination of two hybridized orbit	als belonging to two	atoms and each having one electron				
	1) sigma hand 2) double hand	2) as ordinate serve	lant hand () ni hand				
<i>1</i> 1	Which of the following statements is not as	3) co-ordinate cova	i honds formed between two earbon				
41.	atoms?	freet for signa and p	r-bonds formed between two carbon				
	1) Sigma-bond determines the direction bet	ween carbon atoms h	ut a ni-bond has no primary effect in				
	this regard	tween carbon atoms o	at a pi-bond has no primary effect in				
	2) Sigma-bond is stronger than a pi-bond						
	3) Bond energies of sigma- and pi-bonds ar	e of the order of 264	kJ/mol and 347 kJ/mol, respectively				
	4) Free rotation of atoms about a sigma-bor	nd is allowed but not	in case of a pi-bond				
42.	How many s and p bonds are present in tolu	uene?	1				
	1) $3\pi + 8\sigma$ 2) $3\pi + 10\sigma$	3) $3\pi + 15\sigma$	4) $6\pi + 3\sigma$				
43.	The number of lone pair and bond pair of e	lectrons on the sulphi	ar atom in sulphur dioxide molecule are				
	respectively						
	1) 1 and 3 2) 4 and 1	3) 3 and 1	4) 1 and 2				
44.	How many sigma bonds are in a molecule of	of diethyl ether, C_2H_5	OC_2H_5				
	1) 14 2) 12	3) 8	4) 16				
45.	Which of the following statements is not co	orrect?	,				
	1) Hybridisation is the mixing of atomic or	bitals prior to their co	ombining into molecular orbitals				
	2) sp^2 hybrid orbitals are formed from two <i>p</i> -atomic orbitals and one <i>s</i> -orbital						
	3) d^2sp^3 hybrid orbitals are directed towards	s the corners of a regu	ular octahedron				
	4) dsp^3 hybrid orbitals are all at 90° to one	another					
46.	Which of the following species has a linear	shape ?					
	1) SO ₂ 2) NO_2^+	3) CH ₄	4) NO_2^-				
47.	Using VSEPR theory, predict the species w	hich has square pyrai	nidal shape				
	1) SnCl ₂ 2) CCl ₄	3) SO ₃	4) BrF ₅				
48.	Amongst the following, the molecule/ion the	nat is linear is :					
	1) SO ₂ 2) CO ₂	3) ClO_{2}^{-}	4) NO_2^-				
49.	Which of the following structure is most sta	able ?	-				
	F A F						

		F					
	F						
	I II III	I					
	Choose the correct option.						
	1) Only I 2) Only II	3) Only III	4) All three have same stability				
50.	The true statements from the following are						
	1. PH ₅ and BiCl ₅ do not exist	2. $p\pi - d\pi$ bond is	present in SO ₂				
	3. Electrons travel with the speed of light	4. SeF ₄ and CH ₄ ha	ve same shape				

68.	The molecular electro	onic configuration of H	\mathbf{I}_2^+ ion is?			
	1) $(\sigma ls)^2$	2) $(\sigma ls)^2 (\sigma^* ls)^2$	3) $(\sigma ls)^2$	$(\sigma^*1s)^1$	4) $(\sigma ls)^3$	
69.	In the change of NO ⁺ 1) σ - orbital	to NO, the electron is 2) π – orbital	added to 3) σ^* - or	bital	4) π^* - orbital	1
70.	The correct statement	with regard to H2 ⁺ an	d H2 ⁻ is			
	1) Both $H2^+$ and $H2^-$	do not exist	2) H_2^- is n	nore stable than H	+ 2	
	3) H_2^+ is more stable	than H_2^-	4) Both H	I_2^+ and H_2^- are equal	lly stable	
71.	If N_x is the number of	f bonding orbitals of ar	n atom and]	N _y is the number of	f antibonding or	rbitals, then the
	molecule/atom will be $1 \ge N \ge N$	e stable if $(2) N = N$	2) NI – NI			
72	I) $N_x \ge N_y$ In an anti-bonding model	2) $N_x = N_y$	3) $N_x < N_y$ on density is	y s minimum	4) $N_x \leq N_y$	
/2.	1) around one atom o	f the molecule	in density it	2) between the	e two nuclei of	the molecule
	3) at the region away	from the nuclei of the	molecule	4) at no place		
73.	When two atomic orb	itals combine, they for	m			
	1) one molecular orbi	tal	2) two mo	lecular orbital		
74	3) three molecular or	oital	4) four mo	olecular orbital		
/4.	1) AsH ₃	2) SbH ₃	$\frac{10 \text{ West Dol}}{3} \text{ PH}_3$	4) NH	3	
75.	Which one of the foll	owing is the correct or	der of intera	actions?	5	
	1) covalent < hydroge	en bonding < van der V	Vaals <mark>< dipo</mark>	oledipole		
	2) van der Waals < hy	drogen bonding < dip	ole-dipole <	covalent		
	3) van der Waals $< di$	pole-dipole < hydroger	n bonding <	< covalent		
76	4) dipole-dipole $< valAn ether is more vola$	tile than an alcohol ha	n bonding < ving the sar	ne molecular form	ula. This is due	to
/0.	1) alcohols having res	sonance structures	$\frac{110}{2}$	intermolecular hvd	rogen bonding	in ethers
	3) intermolecular hyd	rogen bonding in alcol	nols 4)	dipolar character o	f ethers	
77.	Pa <mark>ram</mark> agnetism is exh	nibited by molecules				
	1) not attracted into a	magnetic field	2)	containing only part	ired electrons	
70	3) carrying a positive	charge	4)	containing unpaire	d electrons	
/0.	$1) C_2 H_2 OH$	$\begin{array}{c} \text{maximum in :} \\ \text{2) CH}_2\text{OCH}_2 \end{array}$	$(CH_2)_2$	C = O	4) CH_2CHO	
79.	What is the dominant	intermolecular force of	or bond that	must be overcome	in converting l	iquid CH ₃ OH
	to a gas?				U	1 -
	1) Dipole-dipole inter	raction	2) Covaler	nt bonds		
	3) London dispersion	force	4) Hydrog	gen bonding		
80.	In O_2^-, O_2 and O_2^{-2} mo	ecular species, the tot	al number o	of antibonding elec	trons respective	ely are
	1) 7, 6, 8	2) 1, 0, 2	3) 6, 6, 6		4) 8, 6, 8	
		NEEL PREVIC		AKS QUE	SIIONS	
1	In the structure of CII			tura a a cantural at a	···· (C1) :=	[2010]
1.	In the structure of CII	f_3 , the number of lone (3) Thr	pair of elect	trons on central ato	om [•] Cl ² 1s	[2018]
2.	Which of the following	ng molecules represent	s the order of	of hybridisation <i>sn</i>	2. <i>sp</i> 2. <i>sp. sp</i> fr	om left to right
	atoms?			or ny orraitation sp	_ , <i>sp</i> _ , <i>sp</i> , <i>sp</i> m	[2018]
	1) $HC \equiv C - C \equiv CH$	$2) CH_2 = CH - C \equiv CH$	H 3) CH ₃ –	$CH = CH - CH_3$	4) $CH_2 = CH_2$	$-CH = CH_2$
3.	Consider the following	ig species :	-	-	_	[2018]
	$\mathrm{CN}^{\scriptscriptstyle +},\mathrm{CN}^{\scriptscriptstyle -},\mathrm{NO}$ and O	CN Which one of these	will have t	he highest bond or	der?	_
	1) NO 2) CN	- 3) CN		4) CN	+	
4.	The species, having b	ond angles of 120° is :		, 51		[2017]
	-					
						29

www.alliantacademy.com

	1) CIF.	NC1.	2) PC1.	4) D U.	
5	Which of the following	2) INC13 nairs of species have	5) DC13 e the same bond order ?	4) ГП ₃	[2017]
5.	1) O. NO ⁺	$(2) CN^{-} CO$	3) N. Ω_{-}^{-}	4) CO_NO	[2017]
6	Consider the molecules	CH, NH, and H ₂ O	Which of the given sta	tements is false?	[2016]
υ.	1) The H C H hand ar	$S C \Pi 4$, $N \Pi 3$ and $\Pi 2 O$.	H bond angle in NH.	and the H O H bon	1 angle in H ₂ O
	are all greater than 90°	igic in $C114$, the $11-13$	-11 bolid aligic ili N113,		a angle in 1120
	2) The H_0 -H bond ar	ole in H2O is larger t	than the H_ C_H bond :	angle in CH4	
	3) The H–O–H bond ar	igle in H ₂ O is smaller	r than the H–N–H bond	angle in NH ₃ .	
	4) The H–C–H bond an	igle in CH_4 is larger t	han the H–N–H bond a	ngle in NH ₃ .	
7.	Predict the correct orde	r among the followin	ig :-	0	[2016]
	1) lone pair- lone pair >	> lone pair - bond pai	r > bond pair - bond pa	ir	
	2) lone pair - lone pair	> bond pair - bond pair	air > lone pair - bond pa	nir	
	3) bond pair - bond pair	r > lone pair - bond p	air > lone pair - lone pa	uir	
	4) lone pair - bond pair	> bond pair - bond p	air > lone pair - lone pa	air	
8.	Decreasing order of sta	bility of O_2, O_2^-, O_2^+ a	and $O_2^{2^-}$ is:		[2015]
	1) $O_2^+ > O_2^- > O_2^- > O_2^{2-}$	2) $O_2^{2-} > O_2^{-} >$	$O_2 > O_2^+$		
	3) $O_2 > O_2^+ > O_2^{} > O_2^{}$	4) $\Omega_{2}^{-} > \Omega_{2}^{2-} >$	$O_{2}^{+} > O_{2}$		
9	The correct bond order	in the following spec	$c_2 \neq c_2$		[2015]
<i>.</i>	1) $O^{2+} < O^{-} < O^{+}$ 2) $O^{-} < O^{+} > O^{-}$ 2) $O^{-} < O^{+} > O^{-}$ 2) $O^{-} < O^{+} > O^{-} < O^{+} > O^{-}$ 2) $O^{-} < O^{+} > O^{-} < O^{+} < O^{-} < O^{+} > O^{-} < O^{+} > O^{-} < O^{+} < <$	$11^{+} < 0^{-} < 0^{2+} 3 = 0^{-}$	$(0^{+} < 0^{2+} 4) 0^{2+} < 0^{2+}$	+ < 0 ⁻	[2010]
10	$\frac{1}{O_2} < O_2 $	$v_2 < O_2 < O_2 < O_2$ $(O_2 - J) O_2$	$(0_2 < 0_2 + 0_2 < 0_2)$	$2 < O_2$	[2015]
10.	1) Clo ⁻ CO ²⁻	s pairs of lons are ison	$2)$ C_{10}^{-} C_{10}^{2-}	$(1)^{2-}$ $(1)^{2-}$	[2015]
	1) CIO_3, CO_3	(1) SO_3 , NO_3	$(5) CIO_3, SO_3$	4) CO_3 , SO_3	
11.	Maximum bond angle a	at nitrogen is present	in which of the following	ng?	[2015]
	1) NO_2^- 2	2) NO_2^+	3) NO_3^-	4) NO_2	
12.	Which of the following	species contains equ	al number of σ and π –	bonds	[2015]
	1) XeO_4 2	2) (CN)	3) $CH_2(CN)_2$	4) HCO_3^-	
		× 72	2 ()2		
13.	Which of the following	molecules has the m	aximum dipole momen	t?	[2014]
	1) CO_2	2) CH_4	3) NH ₃	4) NF ₃	
14.	Which one of the follow	ving species has plan	ar triangular shape?	/ 5	[2014]
1.11	1) N^-	NO^{-}	3) NO^{-}	4) CO	[=•1]
15	The number of sigma (s)	and $ni(n)$ hands in r	3) 102	1) 002	(2010)
15.	(1) 10σ bonds and 3π b	and pr (p) bonds in p onds	(2) 8σ bonds and 5π 1	bonds	(2019)
	(1) 100 bonds and 3π bonds and 2π bonds and 2π	onds	(4) 13σ bonds and $n\sigma$	π hond	
16	Which of the following c	liatomic molecular sr	ecies has only π bonds	according to Molecu	lar Orbital
10.	Theory?			according to more	(2019)
	$(1) O_2$ ((2) N_2	$(3) C_2$	(4) Be_2	()
17.	Which of the following i	s paramagnetic?		(2019	-ODISSA)
	(1) N_2 ((2) H_2	(3) Li ₂	(4) O ₂	,
18.	Which of the following i	s the correct order of	dipole moment?	(2019	9-ODISSA)
	(1) $NH_3 < BF_3 < NF_3 < H_3$	H ₂ O	$(2) BF_3 < NF_3 < NH_3 < NH_$	< H ₂ O	
	(3) $BF_3 < NH_3 < NF_3 < H_3$	H ₂ O	$(4) H_2O < NF_3 < NH_3$	<bf<sub>3</bf<sub>	
19.	The number of hydrogen	bonded water molec	ule(s) associated with ($CuSO_4$. 5H ₂ O is (201)	9-ODISSA)
20	$(1) 3 \qquad ($	2) 1	(3) 2	(4) 5	COLUD
20.	Among the compounds s (1) NO.	shown below which o	ne revealed a linear strue (2) O	$\begin{array}{c} \text{acture} \\ (2020) \\ (4) \text{ N}_{2} \\ \end{array}$	-COVID)
21	(1) INO_2 (The notential energy (y)	2) NUCI curve for Haformatio	$(5) U_3$ n as a function of interv	(+) 1N2U nuclear distance (x) o	f the H atoms
<i>4</i> 1.	is shown below			(2020) (2	
				(2020	

	y a b c c c c c c c c c c c c c c c c c c	\rightarrow X			
	(1) $(b-a)$	$(2) \frac{(c-a)}{2}$	$(3) \frac{(b-a)}{2}$	(4) $(c-a)$	
22.	Identify a molect	ule which does not ex	ist?		(NEET-2020)
	1) <i>O</i> ₂	2) <i>He</i> ₂	3) <i>Li</i> ₂	4) <i>C</i> ₂	
23.	Match List-I wit	h List-II.			[NEET-2021]
24. 25. 26.	List I a) PCl_5 b) SF_6 c) BrF_5 d) BF_3 Choose the correction PF_5 d) PF_5 d) PF_5 choose the correction PF_5 choose the correction PF_5 d) PF_5 choose the correction PF_5 d) PF_5 d) PF_5 choose the correction PF_5 d) PF_5 d	List II i) Square ii) Trigo iii) Octa iv) Trigo ect answer from the op), 3)-(iv), 4)-(i) d electron deficient co pectively are: 2. sp^2 ar ing pairs of ions which 2) Mn^{2+} lowing molecules is n	e pyramidal nal planar hedral mal bipyramidal tions given belov 2) 1) –(iii) 4) 1) –(iv), ompound. Hybridi ad 6 3. n one is not an iso Fe^{3+} 3) on-polar in nature 2) SbCl ₅ will have maxim	v. , 2)-(i), 3)-(iv), 4)-(ii) , 2)-(iii), 3)-(i), 4)-(ii) ization and number of e sp^2 and 8 - electronic pair? Fe^{2+}, Mn^{2+} 3) NO_2 uum 'lone pair-lone pa	lectrons around the [NEET-2021] p^3 and 4 [NEET-2021] p^{2^-}, F^- [NEET-2021] 4) POCl ₃ ir' electron repulsions?
27.	Amongst the fo	ollowing which one v	vill have maxim	ium ^c lone pair-lone pa	[NEET-2022]
28.	1) CIF_3 Match List – I v List – I (Hydrides) a)MgH ₂ b)GeH ₄ c) B ₂ H ₆ d) HF Choose the corr 1) (a)-(iv), (b)-(2) (a)-(iii),(b)-(ii 4) (a)-(ii),(b)-(ii	2) IF_5 with List – II Lis (Na i)El ii)E iii) iv) I rect answer from the (i),(c)-(ii),(d)-(iii) i),(c)-(iv),(d)-(iii) ii),(c)-(iv),(d)-(iii)	3) <i>SF</i> ₄ t – II ectron precise lectron deficient Electron rich onic options given b	4) XeF ₂ t	[NEET-2022]

		NCER	T LINE BY	LINE	QUESTIO	NS – A	NSWERS		
(1.)	с	(2.)	с	(3.)	d	(4.)	с	(5.)	b
(6.)	b	(7.)	d	(8.)	b	(9.)	b	(10.)	d
(11.)	a	(12.)	b	(13.)	d	(14.)	d	(15.)	b
(16.)	a	(17.)	a	(18.)	d	(19.)	a	(20.)	b
(21.)	b	(22.)	a	(23.)	d	(24.)	с	(25.)	b
(26.)	d	(27.)	с	(28.)	a	(29.)	с	(30.)	с
(31.)	с	(32.)	a	(33.)	d	(34.)	a	(35.)	d
(36.)	с	(37.)	С	(38.)	с	(39.)	b	(40.)	b
(41.)	с	(42.)	d	(43.)	a	(44.)	a	(45.)	с
(46.)	с	(47.)	a	(48.)	b	(49.)	d	(50.)	d

TOPIC WISE PRACTICE QUESTIONS – ANSWERS

1) 3	2) 3	3) 4	4) 3	5) 3	6) 1	7) 1	8) 2	9) 4	10) 2
11) 2	12) 4	13) 4	14)1	15) 2	16) 1	17) 2	18) 1	19) 4	20) 2
21) 2	22) 3	23) 2	24) 3	25)1	26) 4	27) 3	28) 1	29) 4	30) 3
31)1	32) 2	33) 3	34) 1	35) 2	36) 3	37)1	38) 2	39) 1	40) 1
41) 3	42) 3	43) 4	44) 1	45)4	46) 2	47) 4	48) 2	49) 1	50) 2
51) 2	52) 2	53) 4	54) 3	55)1	56) 2	57)3	58) 3	59) 1	60) 3
61) 2	62) 1	63) 1	64) 3	65) 3	66) 4	67) 3	68) 3	69) 4	70) 3
71)1	72) 2	73) 2	74) 3	75) 3	76) 3	77) 4	78) 1	79) 4	80) 1

NEET PREVIOUS YEARS QUESTIONS-ANSWERS

1) 2	2) 2	3) 2	4) 3	5) 2	6) 2	7) 1	8) 1	9) 3	10) 3
11)2	12) 1	13) 3	14) 2	15) 1	16) 3	17)4	18) 2	19) 2	20)4
21) 1	22) 2	23)4	24) 2	25) 3	26) 2	27) 4	28) 1		

NCERT LINE BY LINE QUESTIONS – SOLUTIONS

- (1.) (c) Basically the strength of a bond depends upon the extent of overlapping. In case of sigma bond, the overlapping of orbitals takes place to a larger extent. Hence, it is stronger as compared to the pi bond where the extent of overlapping occurs to a smaller extent.
- (2.) (c) Dipole moment is a vector quantity and by convention it is depicted by the small arrow with tail on the negative centre and head pointing towards the positive centre.
- (d) Electrons from outermost shells ns and (n-1)d take part in bond formation for transition elements. Assertion-Reason Type Questions
- (4.) (c) H_2O has highest dipole moment.
- (5.) (b) $XeP_4 sp^3d^2 l.p. = 2$, square planar

 $XeF_6 - sp^3d^3 - l.p. = 1$, distorted octahedral

 $XeOF_4 - sp^3d^2 - l.p. = 1$, square pyramidal

- $XeO_3 sp^3 l.p. = 1$, pyramidal
- (6.) (b) Both the molecules, NH_3 and NF_3 , have pyramidal shape with a lone pair of electrons. Therefore, the sum of lone pair of electrons present in the molecule of NH_3 and NF_3 is two.
- (7.) (d) Electronic configuration of $\text{He}_2: (\sigma \text{ls})^2 (\sigma^* \text{ls})^2$

Bond order of He₂ is $\frac{1}{2}(2-2)=0$

While bond order of O_2 is two.

- (8.) (b) CH_4 and NH_4^+ both have tetrahedral molecular geometry.
- (9.) (b) The bond angles of NH_3 , CH_4 and H_2O molecules are 107° , 109.5° and 104.5° respectively.
- (10.) (d) All the given statements regarding formal charge are correct.
- (11.) (a) Zero overlap due to the out of phase for different orientation direction of approach.
- (12.) (b) Molecule C_2H_2 and $BeCl_2$ both have *sp* hybridisarion.
- (13.) (d) The correct order of energies of molecular orbitals in N_2 molecule is

$$\sigma_{2s} < \sigma_{2s} < (\pi_{2p_{x}} = \pi_{2p_{y}}) < \sigma_{2p_{z}} < (\pi_{2p_{x}} = \pi_{2p_{y}}) < \sigma_{2p_{z}}$$

- (14.) (d) Ammonia (NH3) has one lone pair of electrons, tetrahedral molecular geometry and trigonal pyramidal shape.
- (15.) (b) In general, the least electronegative atom occupies the central position in the molecule/ion. For example, in the NF₃ and CO_3^{2-} , nitrogen and carbon are the central atoms whereas fluorine and oxygen occupy the terminal positions.
- (16.) (a) The direction of the C H bond cannot be ascertained because the 2s orbital of carbon and the ls orbital of H are spherically symmetrical and they can overlap in any direction.
- (17.) (a) O-H will be the strongest bond.
- (18.) (d) All the given statements regarding octet theory are correct.
- (19.) (a) In sp hybridisation, 50 %s character and 50 % p-character.
- (20.) (b) Both assertion and reason are true statements.
- (21.) (b) Among the given molecules, H₂O, ClP₃, and XeF₄ have two lone pair of electrons. SO₂, NH₃, SF₄ and BrF₅ have one lone pair of electron.
- (22.) (a) As per postulates of VSEPR theory, the pairs of electrons tend to occupy such positions in space that minimise repulsion and thus maximise distance between them.
- (23.) (d) The molecular orbitals like atomic orbitals are filled in accordance with the aufbau principle obeying the Pauli's exclusion principle and the Hund's rule.
- (24.) (c) A positive bond order, *i.e.* $N_b > N_a$, means a stable molecule while a negative, i.e. $N_b < N_a$, or zero (i.e., $N_b = N_a$) bond order means an unstable molecule.
- (25.) (b) Both assertion and reason are true statement.
- (26.) (d) BeCl₂ has sp-hybridisarion, the two sp-hybrid orbitals are oriented in opposite direction forming an angle of 180°.
- (27.) (c) Overlapping of atomic orbitals depends upon the sign (phase) and direction of orientation of amplitude of orbital wave function in space.
- (28.) (a) One lone pair of electron is present in SF_4 molecule.

SF₄molecule

(29.) (c) PF_5 and SF_6 have expanded octet

(50.) (d) Bond lengths are measured by spectroscopic, X-ray diffraction and electron-diffraction techniques. TOPIC WISE PRACTICE QUESTIONS – SOLUTIONS 1. (3) Higher the difference in electronegativity between the two atoms, more will be electrovalent character of the bond. Among given choices, calcium and hydrogen have maximum difference in their electro negativities. 2. 3) 3. 4) H - OCl-Ba-Cl H2N-NH2 H - Clн (a) **(b)** (c) (d) 5. 4. 3) 6. 1) 3) 7. (1) The value of lattice energy depends on the charges present on the two ions and the distance between them. 8. (2) For compounds containing cations of same charge, lattice energy increases as the size of the cation decreases. Thus, NaF has highest lattice energy. The size of cations is in the order: $Na^+ < K^+ < Rb^+ < Cs^+$ 9. (4) In SiCl4 difference between electronegativity of Si (1.8) and chlorine (3.0) is higher than in other given compounds. 10. (2) Hydrogen fluoride has a large value of dipole moment. This is due to very high electronegativity of the fluorine as a result it pulls electrons strongly. (2) The stability of the ionic bond depends upon the lattice energy which is expected to be more 11. between Mg and F due to +2 charge on Mg atom. 12. (4) In SF4 molecules central S-atom is surrounded by 10valence electrons and it is hypervalent compound. (4) In metallic bonds, each ion is surrounded by equal number of oppositely charged electrons, hence 13. have equal electrostatic attraction from all sides and hence do not have directional characteristics. 14. (1) The set of compounds BCl3, SiCl4, PCl3 are predominatly covalent compounds. NH4Br and NaI ionic compounds and Al contains metallic lattice. (2) According to Fajan's rule smaller, highly charged cation has greatest covalent character while large 15. cation with smaller charge has greatest ionic character.

16. (1) In ionic solids, the sum of the electron gain enthalpy and the ionization enthalpy may be positive but still the crystal structure gets stabilized due to the energy released in the formation of the crystal lattice.

- 17. (2) According to Fajan's rule, higher charge on the ions, more covalent is the compound.
- 18. (1) 19. 4)

- 20. 2) In CN⁻ ion, formal negative charge is on nitrogen atom due to lone pair of electrons.
- 21.

2)

 $NO^{-}(16) - B.O. = 2$ $O_2(16) - B.O. = 2$ $NO^{+}(14) - B.O. = 3$ NO(15) - B.O. = 2.5Higher the bond order lower is the bond length.

- Hence NO+ will have smallest bond.
- 22. 3)In CO_3^{2-} , due to resonance, C = O bond length is in between triple and double bond, i.e. in between 1.2 and 1.34. Thus, answer is 1.29 Å.
- 23. (2) Both NO2 and O3 have angular shape and hence will have net dipole moment.
- 24. (3) I and II structure shown above constitute the cannonical structure. III structure represents the structure of O3 more accurately. This is also called resonance hybrid.

25.	(1) According polarise the at Hence AlCl3	g to Fajan's ru nion increase shows maxin	ale, as the char s. This brings num covalent	rge on the cation more and more character.	increases, and size covalent nature to	ze decreases, its electrovalent co	tendency to mpounds.
26. 27.	(4) (3) The dipole F	e moment of	symmetrical n	nolecules is zero	ı.		
	F F						
28.	Triangular pla (1) The dipole	nar (symmet moment of	trical molecule	e) Iclined at an ang	le		
	θ is given by to 180°, the v Thus, dipole 1	the equation alue of cos θ noment is ma	$\mu = \sqrt{X^2 + Y}$ becomes mo- aximum when	$e^{2} + 2XY \cos \theta$, converse and more – version $e^{2} = 90^{\circ}$.	$\cos 90^0 = 0$. Since the and hence result	the angle increas ant dipole mome	es from 90° ent decreases.
29.	(4) In case of	anions havin	g same charge	e, as the s <mark>ize of</mark> a	nion increases, po	olarisibility of an	ion also
30.	(3) If the strue	cture of wate	r is linear, ther	$\mu = 0$, hence it ained.	will be non-polar	and thus the solution	ubility of
31.	1) s-orbital	p-orbital					
32. 33.	The overlap b 2) Equilateral (3) The bond bond is shorte	etween <i>s</i> - an or triangular length decrea	d <i>p</i> -orbitals oc planar shape ases in the ord	ccurs along inter involves sp ² hyb er sp3 > sp2 > sp	nuclear axis and h pridization. 9. Because of the	triple bond, the c	s 180°. carbon-carbon
34.	(1) The numb Species	er of lone pa nil	irs of electrons Number of	s on central aton f lone pairs on ce	n in various given entral atom	species are	
	IF ₅	1					
	XeF ₂	3					
			IF ₇ <	$IF_5 < CIF_3 < XeF_2$			
25	Thus the correction	ect increasing	g order is ⁰	1 2 3			
55. 26	2) BF_3 Involve (2) In Y_2E_2 of	es spnyoric	lization.				
50.	IF2 both XeF	2 and IF2					
	$- \operatorname{are} sp3d \text{ hy}$	bridized					
25	and have trigo	onal bipyram	idal (linear) sh	hape due to prese	ence of 3 <i>lp</i> of ele	ctrons.	
37.	(1) The bond	angle decrea	ses on moving	g down the group	due to decrease 1	in bond pair-bon	d pair
	NH3	PH3	AsH3	SbH3	BiH3		
	107°	94°	92°	91°	90°		
	This can also	be explained	by the fact the	at as the size of	central atom incre	eases and its elect	tronegativity
	a result bond	angle decreas	ses from NH3	to BiH3.	increases and <i>op-</i>	<i>bp</i> repulsion dee	Icases. As
38.	(2) Hybridisa	tion is <i>sp</i> 3 an	d shape pyran	nidal.			
39.	(1) BF3 is sp_{2}	2 hybridised.	So, it is trigon $(F_3, has an 2d)$	hal planar. NH3,	and PC13 have sp	3 hybridisation,	hence have
40.	(1) Linear con	nbination of	two hybridize	d orbitals leads	to the formation o	f sigma bond.	
41.	(3) As sigma bond.	bond is stron	ger than the π	(pi) bond, so it	must be having h	igher bond energ	gy than π (pi)

42. (3) $15 \sigma + 3 \pi$ 43. (4)lp = 1bp = 444. (1) Number of σ -bonds = 14 45. (4) 46. (2)47. (4) BrF5 has square pyramidal geometry. 48. (2) Molecule or ion having *sp* hybridisation and no lone pair of electrons is linear. CO2 H = 1/2 (4 + 0 (+0-0) = 2 sp (linear shape) 49. (1)50. (2) SeF4 has distorted tetrahedral geometry while CH4 has tetrahedral geometry. 51. 2) Molecule Hybridization SO₃ sp^2 C_2H_2 sp C_2H_4 sp^2 CH₄ sp3 sp CO₂ 52. 2) Allyl cyanide is : $\underset{H \neq \sigma}{\overset{H}{\underset{\sigma}}} C \underbrace{\overset{H}{\underset{\sigma}{\underset{\sigma}}}}_{\pi} C \underbrace{\overset{H}{\underset{\sigma}{\underset{\sigma}{\underset{\sigma}}}}}_{\sigma} C \underbrace{\overset{H}{\underset{\sigma}{\underset{\sigma}{\underset{\sigma}}}}}_{\pi,\pi} \ddot{N}$ It contains 9 sigma bonds, 3 pi bonds and 1 lone pair of electrons. 53. (4) The bond angle will be exactly $109^{\circ}.28$ ' when the central atom is sp3 hybridised and all bonds have same atom. CCl4 has all identical bonds (C - Cl) and central carbon is *sp*3 hybridised. So, it has bond angle exactly 109°.28'. 54. (3) H2O, NH3 and CH4 all are sp3 hybridized but due to two lp - lp repulsions, bond angle in H2O (104.5°) is lower than in NH3 (107°) which has one *lp* and CH4 (109° 28') which has no *lp*. BeF2 on the other hand, has sp hybridization and hence has a bond angle of 180°. 55. (1) The structure of IF6 – is distorted octahedral This is due to presence of a "weak" lone pair. 1649 56. (2)57. (3) Applying VSEPR theory, both NF3 and H2O are *sp*3 hybridized. 58. 59. (3) (1)60. (3) 61. (2)62. 1) sp^3d -hybridisation Shape \rightarrow Linear 63. 1)

- 64. 3) By *sp*2-hybridisation. Hybridisation orbital = $3[3\sigma - bonds]$ Unhybridised orbital = $1[1\pi - bond]$
- 65. 3) Hybridisation :

1.
$$:$$
 SF₂ $\Rightarrow \frac{1}{2}(6+2) = 4 = sp^{2}$

2.
$$:$$
 SF₄ $\Rightarrow \frac{1}{2}(6+4) = 5 = sp^3d$

3. $SF_6 \Rightarrow \frac{1}{2}(6+6) = 6 = sp^3d^2$

66. 4)The strength of a bond depends upon the extent of overlapping. s-s and s-p overlapping results in the formation of σ bond but extent of overlapping along internuclear axis is more in case of s-s overlapping than in *s*-*p*. *p*-*p* overlapping may result in σ bond if overlapping takes place along internuclear axis or may result in π -bond if sideways overlapping takes place. In any case the extent of overlapping is lesser in p - p than that of the other two, s-s and s-p. Hence the correct order is s - s > s - p > p - p3) $\mathbf{N}_2^+ = 7 + 7 - 1 = 13$ electrons Configuration is $\sigma \mathbf{ls}^2, \sigma^* \mathbf{ls}^2, \sigma \mathbf{2s}^2, \sigma^* \mathbf{2s}^2, \pi 2p_x^2 = \pi 2p_y^2, \sigma 2p_z^1$ 67.

Bond order =
$$\frac{nb-na}{2} = \frac{1}{2}(9-4) = \frac{1}{2} \times 5 = 2.5$$

M.O. configuration of NO^+ is : $(\sigma_{1s})^{2}(\sigma_{1s})^{2}(\sigma_{2s})^{2}(\sigma_{2s})^{2}(\sigma_{2p_{y}})^{2}(\pi_{2p_{y}})$ and M.O. configuration of NO is : $(\sigma_{1s})^{2}(\sigma_{1s})^{2}(\sigma_{2s})^{2}(\sigma_{2s})^{2}(\sigma_{2p_{z}})^{2}(\pi_{2p_{z}})^{2}(\pi_{2p_{z}})^{2}(\sigma_{2p_{z}})$ $(\pi 2p_y)^2 (\pi * 2p_x)^1$.

4)

70. 3)
$$H_2^+:(\sigma ls^1); B.O = \frac{1}{2}(1-0) = \frac{1}{2}$$

69.

 $H_2^-:(\sigma ls^2)(\sigma^* ls^1); B.O = \frac{1}{2}(2-1) = \frac{1}{2}$

Even though the bond order of H_2^+ and H_2^- are equal but H_2^+ is more stable than H_2^- as in the latter, an electron is present in the antibonding (σ *1s) orbital of higher energy.

- 71. 1) 72. 2)
- 73. 2) One bonding M.O. and one anti-bonding M.O.
- 74. 3) NH3 undergoes H-bonding and hence has the highest b.p. Among the remaining hydrides i.e. PH3, AsH3 and SbH3 as we move from PH3 to BiH3, the molecular mass increases. As a result the van der waal's forces of attraction increases and the boiling point increases regularly from PH3 to BiH3. 3)
- 75.
- 76. 3) In ether, there is no H-bonding while alcohols have intermolecular H-bonding.
- 77. 4) Molecules having unpaired electrons show paramagnetism.
- 78. 1) Hydrogen bonding is possible only in compounds having hydrogen attached with F, O or N.

$$\begin{array}{ll} C_2H_5-OH & CH_3-O-CH_3 \\ (\mbox{H-bonding possible}) & (\mbox{H-bonding not possible}) \end{array}$$

$$\begin{array}{ccc} & & O \\ & & \parallel \\ CH_3 - C - CH_3 & CH_3 - C - H \\ (H-bonding not possible) & (H-bonding not possible) \end{array}$$

79. (4) Due to intermolecular hydrogen bonding in methanol, it exist as associated molecule.

80. (1) Molecular orbital electronic configuration of these species are : $O_2^-(17e^-) = \sigma_1 s^2 \sigma^* 1 s^2 \sigma_2 s^2 \sigma^* 2 s^2 \sigma_2 p_z^2$

 $\pi 2 p_x^2 = \pi 2 p_y^2 \pi^* 2 p_x^2 = \pi^* 2 p_y^1$

 $O_2(16e^-) = \sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2 \sigma 2p_z^2$

$$\pi 2p_x^2 = \pi 2p_y^2\pi * 2p_x^1 = \pi * 2p_y^1$$

 $O_2^{2-}(18e^-) = \sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2 \sigma 2p_z^2$

 $\pi 2p_x^2 = \pi 2p_y^2 \pi^* 2p_x^2 = \pi^* 2p_y^2$

Hence number of antibonding electrons are 7, 6 and 8 respectively.

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS

1. 2) The structure of CIF_3 is

The number of lone pair of electrons on central Cl is 2.

2)
$$\operatorname{CH}_{2}^{\operatorname{sp}^{2}} = \operatorname{CH}_{-}^{\operatorname{sp}} = \operatorname{CH}_{-}^{\operatorname{sp}}$$

2)NO:
$$(\sigma ls)^2 (\sigma^* ls)^2 (\sigma^2 s)^2 (\sigma^* 2s)^2 (\sigma^2 p_z)^2 (\pi^2 p_x)^2 = (\pi^2 p_y)^2 (\pi^* 2 p_x)^1 = (\pi^* 2 p_y)^2 (\pi^* p_y)$$

B.O =
$$\frac{10-5}{2}$$
 = 2.5
CN⁻: $(\sigma_{1s})^{2}(\sigma_{1s})^{2}(\sigma_{2s})^{2}(\sigma_{2s})^{2}$

$$(\pi 2p_x)^2 = (\pi 2p_y)^2 (\sigma 2p_z)^2$$

B.O. =
$$\frac{10-4}{2} = 3$$

CN : $(\sigma 1s)^2 (\sigma * 1s)^2 (\sigma 2s)^2 (\sigma * 2s)^2$

$$(\pi 2p_x)^2 = (\pi 2p_y)^2 (\sigma 2p_z)^1$$

B.O. =
$$\frac{9-4}{2} = 2.5$$

CN⁺: $(\sigma 1s)^2 (\sigma * 1s)^2 (\sigma 2s)^2 (\sigma * 2s)^2 (\pi 2p_x)^2 = (\pi 2p_y)^2$

B.O. =
$$\frac{8-4}{2} = 2$$

4. 3) BCl_3 is trigonal planar and hence the bond angle is 120° .

5. 2) CN^{-} and CO have same no. of electrons and have same bond order equal to 3.

6.

2)

22.	2)He ₂ molecule does not exist
	M.O configuration = $\sigma 1^2 g s 1 s^2$
	B.O = $\frac{1}{2} (N_6 - N_a) = \frac{1}{2} (2 - 2)$
	Bond order = O
23.	4) $PCl_5 \rightarrow (AB_5) \rightarrow$ Trigonal bipyramidal
	$SF_6 \rightarrow (AB_6) \rightarrow \text{Octahedral}$
	$BrF_5 \rightarrow (AB_5E) \rightarrow Square pyramidal$
	$BF_3 \rightarrow (AB_3) \rightarrow$ Trigonal planar
24.	2) BF_3 hybridization- SP^2
25. 26.	No of electrons -6 3) 2)
	$\begin{array}{c} 0\\ 1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\ -1\\$
27.	XeF ₂ has 3 loneparis so, it has maximum lone-pair -lone pair repulsions
28.	MgH ₂ – Ionic GeH ₄ – Electron precise B ₂ H ₆ – Electron deficient HF – Electron rich