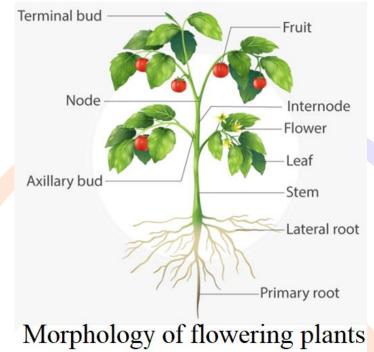
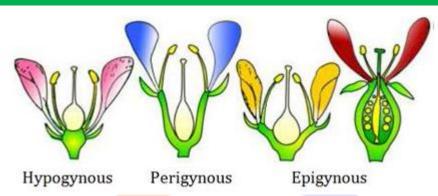

4. Morphology of flowering plants


Biology Smart Booklet - NMA Edu Tech Theory + NCERT MCQs + NEET PYQs

2

Morphology

Morphology is the branch of biological science that deals with the study of form, size, colour, structure and relative position of various parts of organisms.


Morphology Flowering Plants

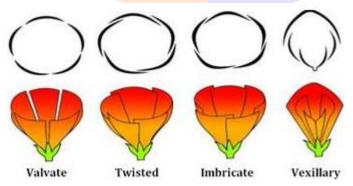
The plant body consists of a main axis, which may be branched or unbranched bearing lateral appendages.

The flower

- 1. Flower is the reproductive part of angiospermic plants for sexual means of reproduction.
- 2. A typical flower has four whorls arranged on a swollen end of stalk or pedicel called thalamus. They are Calyx, Corolla, Androecium and Gynoecium.
- 3. When a flower has both and roecium and gynoecium, the flower is called bisexual and flower having either and roecium or gynoecium only is called unisexual.
- 4. When flower can be divided into two equal radial halves in any radii passing through center the symmetry of flower is called actinomorphic (radial symmetry) as in Mustard, Datura, and Chili.
- 5. When flower can be divided into two similar parts only in one vertical plane it is zygomorphic as in Pea, Gulmohar, Cassia etc.
- 6. When Floral appendages are in multiple of 3, 4 or 5 they are called trimerous, tetramerous and pentamerous respectively. Flower with bracts are called bracteates and without it ebracteate. Based on the position of overy with respect to other floral part on

Based on the position of ovary with respect to other floral part on thalamus, flowers are of following types:

- Hypogynous flower: Ovary occupies the highest position. The ovary in such case is called superior. E.g., Mustard, brinjal and china rose.
- Perigynous flowers: If the gynoecium is situated at the center and other parts are on the rim at same height. Ovary is called half-inferior.
- Epigynous flowers: The margin of thalamus grows to completely cover the ovary. Ovary is said to be inferior.


Calyx

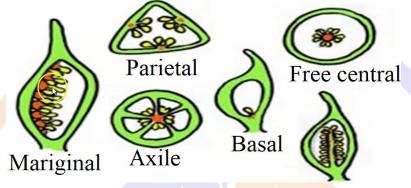
Calyx is the outermost whorl of the flower; its members are called sepals. They are generally green and leafy; protect the flower in bud stage. It may be gamosepalous (sepals united) or polysepalous (sepals free).

Corolla

consists of petals, brightly colored to attract the insects for pollination. They may be gamopetalous or polypetalous.

- The mode of arrangement of sepals or petals in floral bud with respect to the other members of same whorl is called aestivation. In valvate, the whorls of sepals or petals touch each other as in Calotropis. In Twisted aestivation, the whorls overlap each other as in China rose.
- In Imbricate aestivation, margin overlap each other but not in particular fashion as in Gulmohur.
- In pea and bean flowers, there are five petals- the largest (standard) overlaps the two lateral petals (wings) which in turn overlap two smallest anterior petals (keel). This type of aestivation is known as vexillary or papilionaceous.

The Androecium


Androecium represent the male reproductive parts of flower, consists of stamens. Each stamen consists of filament and anther. Pollen grains are

produced in pollen sac. Sterile stamen is called Stemenode.

 When stamens are attached with petals it is called epipetalous (Brinjal).
Stamen may be free (polyandrous) or may be united in one bundle (monoadelphous), two bundles (diadelphous), more than two (polyadelphous).

Placentation

The arrangement of ovules within the ovary is called placentation.

The Gynoecium

- Female reproductive part of flower consists of one or more carpels. Each carpel is made up of stigma style and ovary.
- When more than one carpel is present, it may be free (apocarpous) as in lotus and rose or fused together (syncarpous) as in mustard and tomato.
- After fertilization, ovules change into seeds and ovary mature into fruits.

Flowers can either be:

- Complete
- Incomplete

A complete flower is the one that consists of sepals, petals, stamens and pistil. On the contrary, an incomplete flower is the one that lacks one or more of these structures.

A complete flower consists of two different parts

- Vegetative Part
- Reproductive Part

Vegetative Parts of a Flower

Petals: This is a bright-colored part that attracts bees, insects, and birds. Color of petals varies from plant to plant; some are bright while some are pale colored. Thus, petals help us to differentiate one flower from another.

Sepals: Sepal is the green-colored part beneath the petals to protect rising buds. Some flowers have fused petals-sepals while a few have separated petals-sepals.

Reproductive Parts of a Flower

Stamen: This is the male reproductive organ and is also known as Androecium. It consists of two parts namely: anther and filaments. the anther is a yellowish, sac-like structure, involved in producing and storing the pollens the filament is

a slender, threadlike object, which functions by supporting the anther.

- **Pistil:** This is the innermost part and the female reproductive organ of a flower which comprises three parts -stigma, style and ovary. This is collectively known as the pistil.
 - 1. **Stigma:** It is the topmost part or receptive tip of carpels in the gynoecium of a flower.
 - 2. **Style:** It is the long tube-like slender stalk that connects stigma and the ovary.
 - 3. **Ovary:** It is the ductless reproductive gland that holds a lot of ovules. It is the part of the plant where the seed formation takes place.
- **Carpels:** The carpel is the fourth whorl of the flower present in the center. The carpels contain the pistil, the female reproductive part of the flower. It comprises the ovary, style, and stigma. The egg or the ovule is present in the ovary. After fertilization, sometimes the ovary turns into the fruit to keep the seed. At the top of the ovary is a vertical structure called style that supports the stigma. The dispersed pollens stick to the stigma and travel down to the ovary through the style.

Functions Of Flower

- 1. Gametophytes develop in the flowers.
- 2. The flowers can produce diaspores without fertilization.
- 3. After fertilization, the ovary of the flower develops into a fruit containing a seed.
- 4. The most important function of flowers is reproduction. They help in the union of male and female gametes.
- 5. Flowers provide nectar to certain birds and insects, which in turn help in the transfer of pollen from one flower to the other.
- 6. Flowers may promote selfing, i.e., the union of sperms and eggs from the same flower, or cross-fertilization, i.e., the union of sperms and eggs from different flowers.

Semi -Technical description of a typical flowering plant

The plant is described beginning with its habit, vegetative characters – roots, stem and leaves and then floral characters inflorescence and flower parts.

The floral formula is represented by some symbols. In the floral formula, Br stands for bracteate K stands for calyx, C for corolla, P for perianth, A for androecium and G for Gynoecium. Fusion is indicated by enclosing the figure within bracket and adhesion by a line drawn above the symbols of the floral parts.

Family Fabaceae

This family was earlier known as Papilionoideae. Herbs, shrubs or tree root with root nodules. Pinnately compound leaves with reticulate venation.

Floral Formula: $\% \overset{?}{Q} K_{(5)} C_{1+2+(2)} A_{(9)+1} \underline{G}_1$

Economic importance

Plants belonging to this family are sources of pulses like Gram, Arhar, Bean. Pea

etc. and edible oils like groundnut, soybean, etc.

Family Solanaceae

Plant body herbs or shrubs, rarely small trees, commonly known as potato family. Leaves simple or pinnately compound. Reticulate venation.

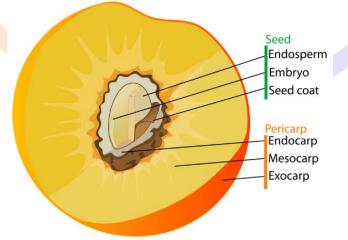
Floral Formula: $\oplus \overset{\frown}{Q} K_{(5)} \stackrel{\frown}{C}_{(5)} A_5 \underline{G}_{(2)}$

Many of them are source of food (potato, tomato, Brinjal etc.), spices (Chilli) etc. Family Liliaceae

- Commonly known as Lily family. Monocots, perennial herbs. Leaves alternate with parallel venation.
- Underground bulbs, corms or rhizomes.
- Flower bisexual, actinomorphic, sepals and petals are absent, having perianth.

Floral Formula: Br
$$\oplus \mathcal{O}^{\mathcal{T}} P_{(3+3)} A_{3+3} G_{(3)}$$

It includes ornamental plants (Tulip), Medicine (aloe) and vegetable (colchicine).

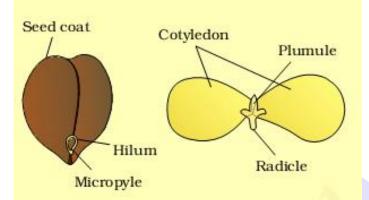

Pollination

Pollination is the process in which the pollens are transferred from anther to stigma. The process of pollination can occur through a different medium.

The fruit

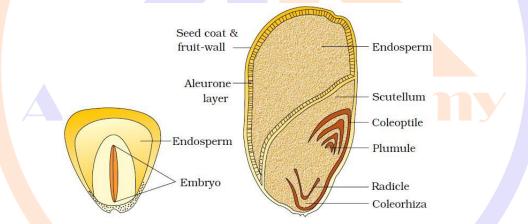
Mature and ripened ovary developed after fertilisation is fruit. If a fruit is formed without fertilisation of ovary it is called parthenocarpic fruit.

Fruit consists of seeds and pericarp. Thick and fleshy pericarp is three layered called epicarp, mesocarp

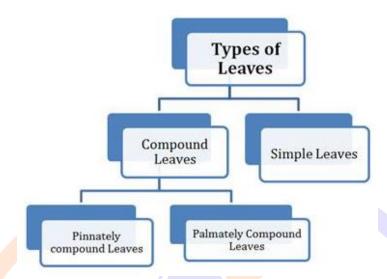


Dicotyledonous Seeds

Dicotyledonous Seed is made up of a seed coat and an embryo. Embryo is made up of embryonal axis, radicle and cotyledons.


Seed coat has two layers outer testa and inner tegmen. Hilum is scar through which seed is attached to the ovary. Small pore above the hilum is called

micropyle.


Monocotyledonous seeds

In monocotyledonous seed, outer covering of endosperm separate the embryo by a proteinous layer called aleurone layer. Single cotyledon is called as scutellum having a short axis bearing Plumule and radicle. Plumule and radicle are closed inside sheaths called as coleoptile and coleorhiza respectively.

The Leaf

Leaves originate from shoot apical meristem and are arranged in an acropetal order a typical leaf consists of three parts - Leaf base, Petiole, Lamina. Leaf is attached with stem by Leaf Base which may bear two small leaf like structure called stipule.

Simple Leaves

A leaf having a single or undivided lamina is called Simple leaf. The incisions do not touch the mid rib. Example- Mango, Guava etc.

Compound leaves

When the incision of lamina reach up to the midrib and breaking it into a number of leaflets, it is called Compound leaves.

Pinnately compound leaves: In a Pinnately compound leaves, a number of leaflets are present on common axis called rachis. Example- Neem.

Palmately compound leaves: In Palmately compound leaves, the leaflets are attached at common point. Example- Silk cotton.

Venation

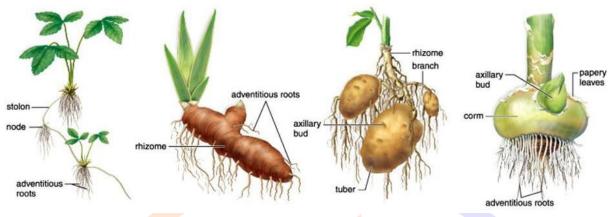
The arrangement of veins and veinlets in the lamina of leaf.

Types of Venation:

Reticulate Venation: Veinlets form a network as in leaves of dicotyledonous plants (China rose, peepal).

Parallel Venation: Veins are parallel to each other as in leaves of monocotyledonous plants (grass, maize, sugarcane).

The Stem


Stem is the aerial part of the plant and develops from plumule of the embryo. It bears nodes and internodes.

Functions of stem:

Exposure of leaves, conduction of water and minerals, translocation of food, exposure of flowers and fruits.

Modification of stems:

- Underground stem of potato, ginger and turmeric are modified to store food. They also act as organ of perennation in unfavorable conditions.
- Stem tendril help plants to climb as in cucumber, pumpkins, and grapes.
- Axillary buds of stem may modify into woody, straight and pointed thorns as in Citrus and Bougainvillea.
- Plants of arid regions modify their stem to flatted (Opuntia), fleshy cylindrical (Euphorbia) having chlorophyll for photosynthesis.

The Root

In plants, root is the non-green (due to absence of chlorophyll), cylindrical and descending part that normally grows downwards into the soil. It does not bear leaves, buds and not distinguished into nodes and inter nodes.

Functions of Roots:

The major functions of roots are as follows:

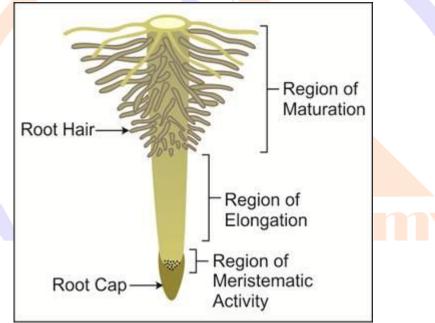
- Fixation Root provides fixation to the plants with soil.
- Absorption Roots absorb water and minerals from the soil and provide it to all parts of the body.
- Storage Roots of many plants store food for the use of other plant parts and for animals.
- Aeration Plants growing in waterlogged soil or marshy areas have special roots, i.e., pneumatophores for respiration.
- Conduction Roots transport water and minerals in upward direction for the uses of stems and leaves.

The main axis is divided into two parts:

- Root system: The underground root system develops from the radicle embryo and helps in fixation of the plant as well as absorption of water and minerals.
- Shoot system: The shoot system is the aerial part of the plant, which is found above the root and ground level. The shoot system includes the stem, leaves, bud, flower, fruits and the seeds. Shoot system is one of the important systems of a plant.

Main functions of root system:

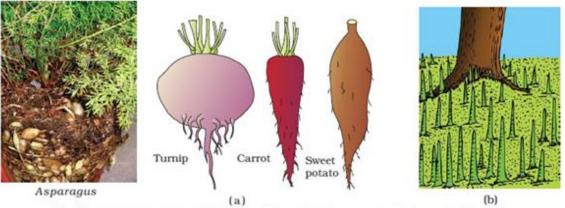
- Absorption of water and minerals from the soil.
- Provides anchorage to plant parts.
- Stores reserve food material and synthesizes plant growth regulators.


Various types of root:

- **Tap root:** Originates from radicle. Dicotyledonous plants e.g., mustard, gram, mango.
- **Fibrous root:** Originates from base of the stem. Monocotyledonous plants e.g., wheat, paddy.
- Adventitious root: Originates from parts of the plant other than radicle.

Banyan tree (Prop roots) Maize (Stilt roots).

Regions of Roots:


- The apex of root is covered by a thimble like structure called root cap, it protect the tender apex of root while making way through soil.
- Above the root cap is region of meristematic activity having small cells with dense cytoplasm.
- The part above the region of meristematic activity is region of elongation where cells under go elongation and enlargement to increase the length of root.
- Region of maturation contain root hairs that help in absorption of water and minerals.

Modification of roots:

Roots are modified for storage, nitrogen fixation, aeration and support.

- Tap root of carrot, turnip and adventitious root of sweet potato get swollen to store food.
- Prop root of Banyan and Stilt root of maize and sugarcane have supporting root coming out from lower node of stems.
- In Rhizophora, Pneumatophores help to get oxygen for respiration as it grows in swampy areas.

Modification of root for : (a) storage (b) respiration: pneumatophore in Rhizophora

Inflorescence

A flower is a significant part of a plant tailored for reproduction. In addition, it is an essential part of the bouquet, decorations, celebrations, garden, rituals, etc. Among different parts of a plant, the flower is the most attractive part due to its beauty and fragrance.

Racemose Inflorescence

In this type of inflorescence, the flowers branch laterally on the floral axis. Here the floral axis keeps on growing and the flowers develop in an acropetal pattern.

Cymose Inflorescence

In this type of inflorescence, the flower is the terminating point of each floral axis. In Cymose inflorescence, flowers follow the basipetal pattern of growth.

Cymose inflorescence

NCERT LINE BY LINE QUESITONS

Unit-2

	Unit-2				
1.	Curly top virus spreads a plant via-	(Pg. 64, E))		
	A) Xylem B) Phloem	C) Vascular bundle D) None of these			
2.	The book 'Plant Anatomy' was publishe	ed by Esau in – (Pg. 64, E))		
	A) Same year as she did her doctorate	B) 1960			
	C) 1954	D) 1957			
3.	Which of referred as 'Webster's of plant	biology – an encyclopedia (Pg. 64, E))		
	A) Plant anatomy	B) Anatomy of angiospermic plant			
	C) Anatomy of seed plants	D) A & B both			
4.	Esau was woman to receive 'Nat	iona <mark>l Acade</mark> my of science ' (Pg. 64, E))		
	A) 7th B) 6 th	C) 5th D) 1th			
5.	Statement – I: Esau got National Acader	ny o <mark>f Science in 195</mark> 7 Statement – II: In 1989, Esa	au		
	rece <mark>iv</mark> ed National Medal of Science in 19	989. (Pg. 64, E))		
	A) <mark>Sta</mark> tement – I & statement – II are bot	h co <mark>rrect</mark>			
	B) <mark>Sta</mark> tement – I & statement – II are bot	h incorrect			
	C) Statement – I is correct and statement	t – <mark>II is inc</mark> orrect			
	D) Statement – I is incorrect and stateme	ent – I is correct			
6.	Mo <mark>rp</mark> hology is study of	(Pg. 65, E))		
	A) External structure of an organism	B) Internal structure of an organism			
	C) S <mark>yst</mark> ematics	D) A & B booth			
	<u>Parag</u>	<u>graph – 5.1</u>			
	<u></u>	he Root			
7.	Radical form-	(Pg. 65, E))		
	A) Root system of plant	B) Floral part of plant			
	C) Shoot system of plant	D) A & B both			
8.	The lateral roots arise from primary roo	t is- (Pg. 65, E))		
	A) Primary root	B) Secondary root			
	C) Tertiary root	D) A & B both			
9.	Choose the given statement which is sui	itable for following figure (Pg. 66, E))		
	P				
	1941 - 1942 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -	N_ /			
	A) It comprises of primary & secondary	root			
	B) Such roots are observed in mustard				
	C) These roots are replace by large num	ber root			

D) A & B both 10. From given set of example choose, how many of following are example of fibrous root and adventitious root respectively. Sweet potato, carrot, turnip, wheat, grass, Monstera, banyan tree (Pg. 66, E) A) 1, 4 B) 1, 3 C) 2, 3 D) 3, 2 11. Adventitious roots arise from-(Pg. 66, E) A) Radicle B) Base of stem in tuft as in wheat C) Part of plant other than radicle as in mustard D) Secondary root 12. Root is characterized by (Pg. 66, E) A) Presence of node & internode B) Mainly (-ve) phototropism D) Mainly (-ve) hydrotropism C) Mainly (-ve) geotropism Which of the following is not the main function of root system is/are 13. (Pg. 66, E) A) Absorption of sap from soil B) Providing proper anchorage to plant parts. C) Synthesis of plant growth regulators D) None of these (Pg. 66, M) 14. Identify given diagram A) B) C) Tap root Fibrous root A) Adventitio us root B) Tap root Adventitious root Fibrous root C) Tap root Adventitious root Fibrous root D) Fibrous root Adventitious root Tap root Paragraph-5.1.1 **Regions of the Root** 15. In aquatic plant the apex of root is covered by (Pg. 67, E) A) Thimble parenchymatous root cap B) Root pocket C) Coleorhiza D) Coleoptile 16. Identify region of root tip (Pg. 67, M) (B) (C)

A) A = Region of maturation, B = Region of elongation, C = Region of meristematic activity, D = Root cap

B) A = Region of elongation, B = Region of meristematic activity, C = Root cap, D

16

www.alliantacademy.com

- = Protective coveringC) A = Region of meristem, B = Region of maturation, C = Region of elongation,
- D = Root cap

D) A = Region of growing cell, B = Region of mature cell, C = Region of dividing cell, (D = Protective covering

- 17. Root hair arise from
 - A) Cortical cell of region of maturation
 - B) Epidermal cell of region of maturation
 - C) Cortical cell of region of elongation

_ _ _

D) Epidermal cell of region of elongation

18. Choose mismatch pair

Column – I

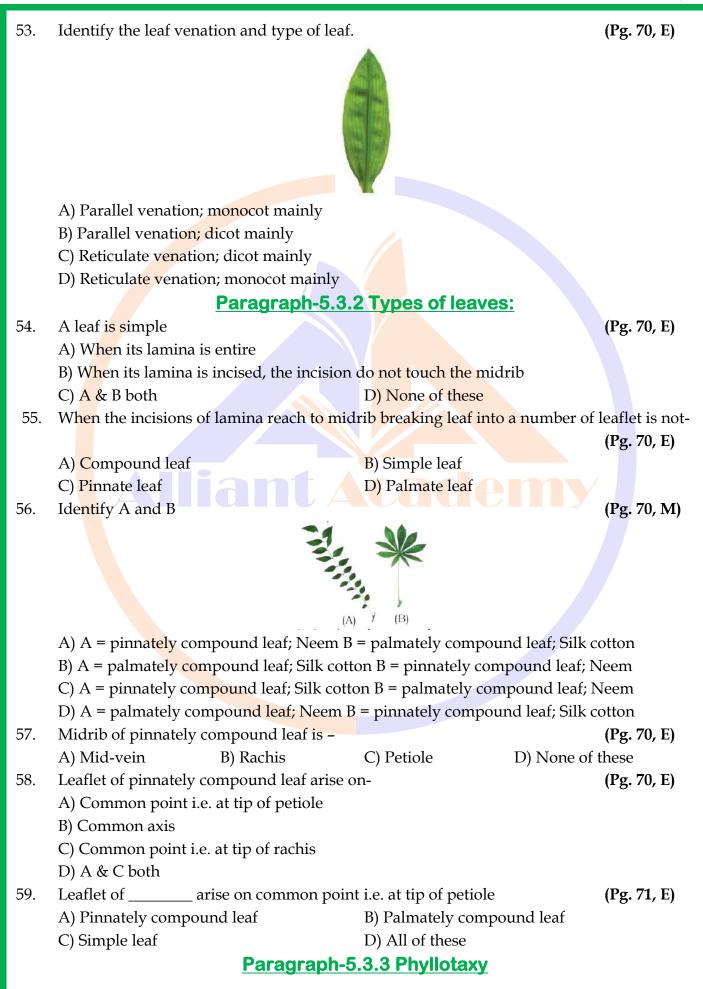
- A) Region of meristematic
- B) Region of elongation
- C) Region of maturation
- D) <mark>Roo</mark>t hair

Column – II

- Small thin wall dense
- Responsible for growth of root in length
- Proximal to region of elongation
- Differentiated and mature
- c<mark>ell pr</mark>oximal to region of maturation

Paragraph-5.1.2 Modification of Root:

19.	Pn <mark>eu</mark> matophores are helpful in-		(Pg. 67, E)
	A) Transpiration	B) Getting oxygen for respiratior	L
	C) A <mark>bs</mark> orption of water	D) Assimilation of food	
20.	Silt roots and pneumatophores are observ	red in-	(Pg. 67, E)
	A) Ma <mark>ize</mark> , Rhizophora	B) Maize, Rhizopus	
	C) Suga <mark>rcan</mark> e <i>Rhizopus</i>	D) A & B both	
21.	Mechanical root observed in -		(Pg. 67, E)
	A) Sugarcane	B) Maize	
	C) Banyan tree	D) All of these	
22.	For food storage root get modified in -		(Pg. 67, E)
	A) Potato	B) Sweet potato	
	C) Ginger	D) A & B both	
23.	Match the following -		(Pg. 67, H)
	Column – I	Column – II	
	A) Conical root	(I) Raddish	
	B) Napiform root	(II) Turnip	
	C) Tuberous root	(III) Sweet potato	
	D) Fusiform root	(IV) carrot	
	a b c d	abcd	
	A) IV II III I	B) IV III II I	
	C) III IV I II	D) III IV I II	
24.	Modification of root <i>Asparagus</i> is meant for	0r –	(Pg. 67, E)

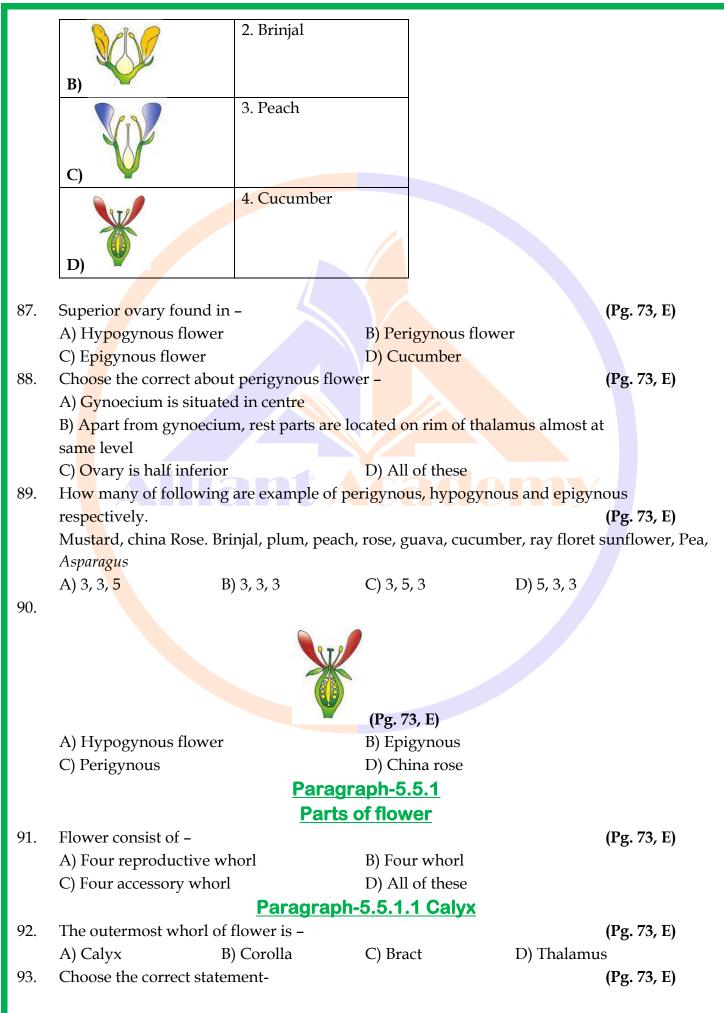

(Pg. 67, E)

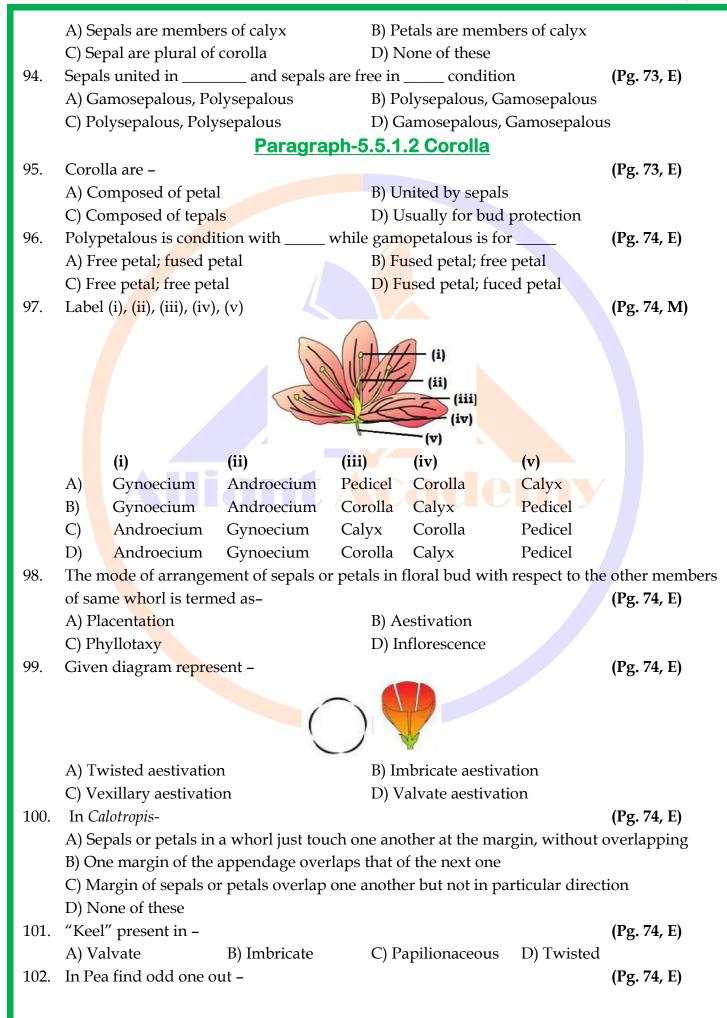
(Pg. 67, H)

			lantacauciny.
	A) Storage of food	B) Mechanical support	
	C) Respiration	D) Climbing support	
25.	Slit root arise from –		(Pg. 67, E)
	A) Lower nodes of Zea mays	B) Lower internode of sugarcane	- 8, -)
	C) Lower internode of Zea mays	D) Upper node of sugarcane	
26.	Pneumatophores are		(Pg. 67, E)
	i) Positive geotropism	ii) Negative geotropism	(-8,-)
	iii) Grown in marshy area	iv) Found in mangroves	
	v) Positive phototropism	vi) Negative phototropism	
	A) i, iii, iv, vi B) ii, iii, iv, v	C) i, iii, v D) ii, iv, vi	
		raph-5.2	
		tem:	
27.			(Da 68 E)
27.	Stem distinguish from root in – A) Presence of node & internode		(Pg. 68, E)
	,	B) Absence of node & internode	
20	C) Presence of hairs for water absorption	D) Absence of bud	(Da 69 E)
28.	Stem are develop from –		(Pg. 68, E)
	A) Radicle of germinating seed	B) Plumule of germinating seed	
20	C) Cotyledons of germinating seed	D) Coleoptile	$(\mathbf{D}_{\mathbf{T}}, (0, \mathbf{T}))$
29.	The region of stem where leaves are born		(Pg. 68, E)
	A) Nodes	B) Internode	
20	C) Both node & internode	D) Floral bud	
30.	Stems are generally –		(Pg. 68 , E)
	A) (+ve) geotropism, (-ve) hydrotropism,		
	B) (-ve) geotropism, (-ve) hydrotropism, (-		
	C) (+ve) geotropism, (+ve) hydrotropism,		
	D) (+ve) geotropism, (-ve) hydrotropism,		
		<u>aph-5.2.1</u>	
		ion of stem:	
31.	Underground modified stem of potato is l		(Pg. 68, E)
	A) Tuber B) Rhizome	C) Corm D) Bulb	
32.	Stem store food for-		(Pg. 68, E)
	A) Favourable condition growth	B) Unfavourable condition growth	
	C) Flowering condition	D) A & C both	
33.	Choose odd on with respect to stem modi		(Pg. 68, E)
	A) Zaminkand B) Colocasia	C) Bougainvillea D) Turmeric	
34.	How many of following stem modification		
	Colocasia, grapevines, cucumber, pumpkir		ainvillea
	A) 7 B) 6	C) 5 D) 4	
35.	Ginger and turmeric are example of –	· · · · · · · · · · · · · · · · · · ·	(Pg. 68, E)
	A) Rhizome B) Rhizoid	C) Corm D) Roots	
36.	Photosynthetic green flattened modified s		(Pg. 68, E)
	A) Acacia B) Euphorbia	C) Opuntia D) Hydrilla	

37.	Stem is modified for protection in -		(Pg. 68, E)
	A) Citrus thorn	B) Bougainvillea spine	
	C) Opuntia thorn	D) A and C	
38.	Statement - I: Some plants of arid region 1	nodify their stems into fleshy cyli	ndrical
	structure as in <i>Euphorbia</i>		
	Statement - II: In grapevines, stem tendril	are for help plant to climb	(Pg. 68, M)
	A) Statement - I and Statement - II are con	rrect.	
	B) Statement – I is correct while statement	– II is not correct	
	C) Statement – I is incorrect while stateme	ent – II is correct	
	D) Statement – I and statement – II are inc	orrect	
39.	Stem tendril of pumpkin develop from-		(Pg. 68, E)
	A) Accessory bud	<mark>B) Ax</mark> illary bud	
	C) Extra – axillary bud	D) Floral bud	
40.	Choose the correct statement about stem r	no <mark>dification</mark> of mint	(Pg. 69, E)
	A) A <mark>sle</mark> nder lateral branch arises from ba	se <mark>of main axi</mark> s and after growing	underground for
	som <mark>e t</mark> ime arch upward to touch the grou	nd <mark>.</mark>	
	B) A slender lateral branch arises from bas	se <mark>of ma</mark> in axis and after growing .	aerially for some
	tim <mark>e</mark> arch downwards to touch the ground	1.	
	C) Stem modification is same as in strawb	erries	
	D) Stem modification mint is known as su	cker	
41.	Match the following:		(Pg. 69, H)
	Column – I	Column – II	
	I) Strawberry	A. Sucker	
	II) Ja <mark>smi</mark> ne	B. Offset	
	III) Pistia	C. Runner	
	IV) Pineapple	D. Stolon	
	A) I – C, II – D, III – B, IV – A	B) I – B, II – C, III – A, IV – D	
	C) I – C, II – A, III – B, IV – D	D) I – A, II – B, III – C, IV – D	<u> </u>
42.	Choose odd one with respect to stem mod		(Pg. 69, E)
	A) Chrysanthemum	B) Banana	
	C) Pineapple	D) Strawberry	
43.	In pineapple –		(Pg. 69, E)
	A) The lateral branches originate from bas	e =	
	stem, grow horizontally beneath the soil a	ind then come out obliquely upwa	ird giving rise to
	leafy shoot.		• 11 6
	B) The lateral branch arises time arch dow		ing aerially for
	some time arch downward to touch the gr		1 1
	C) A lateral branch with short internode a	nd each node bearing a rosette of	leaves and a tuff
	of roots.		
A A	D) None of these		
44.	In <i>Oxalis</i> stem is modified for –	B) Courses and	(Pg. 69, E)
	A) Storage	B) Support	

	C) Pr	otection		D) V	Vegetative propaga	ation	
45.	Later	al branch with	short internod	e & each noc	le bearing a rosette	e of leaves	and a tuft of root
	found	l in –					(Pg. 69, E)
	A) Pis	stia	B) Eichhorni	a C) C	Grasses I	D) A & B b	oth
			_	Paragraph	<u>1-5.3</u>		
				The lea	<u>af</u>		
46.	Choo	se the correct	response:				(Pg. 69, E)
	A) Le	af develop at I	the node and be	ears a bud in	its axile		
	B) Lea	aves originate	from SAM are	arranged in a	acropetal orders.		
	C) Le	af is latera <mark>l ge</mark>	rnerally flatten	ed vegetative	e structure for phot	tosynthesi	S
	D) Al	l of the <mark>se</mark>					
47.	Stipu	les a <mark>re –</mark>					(Pg. 70, E)
	A) Tv	vo <mark>late</mark> ral smal	ll leaf like struc	ture			
	B) Fo	u <mark>r la</mark> teral smal	l leaf like struc	ture			
	C) Or	<mark>ne</mark> lateral smal	l leaf like struct	ure			
	D) M	any lateral sm	all leaf like				
48.		-	ded into a shea		<mark>he</mark> stem partially o	r wholly i	n– (Pg. 70, E)
		onocot			Dicot		
		l angiosperms	plant	D) (<mark>Gym</mark> nosperms		
49.		nus is –					(Pg. 70, E)
		vollen leaf bas					
		-	of legume and c				
50		vollen lamina	7	D) S	Swollen stipule		
50.	Label	– A, B, C, D, I	1	(A)			(Pg. 70, M)
					(B)		
				ASS TO	L.		
			1	- hard	(C)		
			I.C.		(E) (D)		
		Α	В	С	D	Ε	
	A)	Lamina	Stipule	Petiole	Axillary bud	Leaf	
	B)	Lamina	Stipule	Petiole	Axillary bud	Leaf	
	C)	Lamina	Pulvinus	Pedicel	Axillary bond	Leaf	
	D)	Lamina	Stipule	Pedicel	Extraaxillary bo	ond Leaf	base
				Paragraph-			
51	A	compant of wa	n l- mainlatin 1	Venatio			$(\mathbf{D}_{\mathbf{T}},\mathbf{T}_{0},\mathbf{T}_{0})$
51.		0	n & veinlet in l) Nono of	(Pg. 70, E)
52.	/	enation	B) Phyllota: onous plants g			D) None of	(Pg. 70, E)
52.		esence of para	· 0	enerally chai	acterized by -		(I g. 70, L)
	,	-	parallel to each	other withir	a lamina		
			ulate venation				
	,	& B both	and venation				
	-,						




60.	Phyllotaxy is pattern	of arrangement of _	on the		(Pg. 71, E)
	A) Leaf, stem		B) Phloem, stem		
	C) Vein, leaf		D) None of these		
61.	Identify types of phy	llotaxy shown by gi	ven diagram		(Pg. 71, M)
		(a)			
	A)	B) C)	(c)		
	A) Opposite	Alternate Whor	led		
	B) Alternate	Opposite Whor			
	C) Alternate	Whorled Oppos			
	D) None of th	11			
62.	Choose correct staten	nent –			(Pg. 71, E)
	A) I <mark>n a</mark> lternate type; a	a single leaf arises at	each node.		
	B) I <mark>n o</mark> pposite type; a	pair leaves arises at	t ea <mark>ch node.</mark>		
	C) <mark>In</mark> whorled type; n	nore than two leave	s ar <mark>ises at each node.</mark>		
	D) <mark>A</mark> ll of these				
63.	Su <mark>nfl</mark> ower show-				(Pg. 71, E)
	A) <mark>Al</mark> ternate phyllota	xy	B) Opposite phyllot	taxy	
	C) Whorled phyllota	ку	D) None of these		
		<u>Parag</u>	<u>raph-5.3.4</u>		
		<u>Modificat</u>	ion of leaves:		
64.	In Australian acacia				(Pg. 71, E)
	A) Lamina modificati	on	B) Petiole modified		
	C) Stipule modified		D) All of these		
65.	Select the correct opti	.on:			(Pg. 71, E)
		7.1-	(A) (B)		
		No.			
	A) Both A & B are mo	Notified by leaves			
	B) A is tendrils for cli	5			
	C) B is spines for defe	0	D) All of these		
66.	Pitcher of pitcher pla		,		(Pg. 71, E)
	A) Leaf	B) Stem	C) Root	D) Fruit	(0,)
		,	graph-5.4		
			orescence:		
67.	Flower is modified -				(Pg. 71, E)
	A) Node	B) Internode	C) Leaf	D) Shoot	
			-	•	

www.alliantacademy.com

				amantacaaciny.co
68.	Choose the correct statement			(Pg. 71, E)
	A) In flower, SAM changes to floral meri	stem		
	B) In flower, internode do not elongate			
	C) The axis get condensed in flower.			
	D) All of these			
69.	The arrangement of flowers on the floral	axis is –		(Pg. 71, E)
	A) Phyllotaxy	B) Inflorescence		
	C) Aestivation	D) Placentation		
70.	On the basis whether floral apex gets dev	velop into flower or co	ontinues to gro	ow,
	inflorescence are mainly of-			(Pg. 72, E)
	A) 3 types B) 4 types	C) 2 t <mark>ypes</mark>	D) None of	these
71.	In racemose-			(Pg. 72, E)
	A) Main axis continues to grow	B <mark>) Flow</mark> er are in ba	sipetal order	
	C) Main axis terminate into flower	D) B & C both		
72.	Choo <mark>se</mark> the correct statement about giver	n fig <mark>ure</mark>		(Pg. 72, E)
	***	A A A A A A A A A A A A A A A A A A A		
	A) It is of racemose type inflorescence			
	B) Flowers are in basipetal order			
	C) Flowers are in acropetal order			
	D) Example of <i>Cassia</i>			
73.	Given diagram is of –			(Pg. 72, M)
	A) Racemose inflorescence	B) Cymose inflores	scence	
	C) Cymose inflorescence of Cassia	D) B & C both		
	Para	<u>graph-5.5</u>		
		e flower:		
74.	A complete flower consist of –			(Pg. 73, E)
	A) One whorl	B) Two whorls		
	C) Three whorls	D) Four whorls		
75.	Flower stalk is known as –			(Pg. 72, E)
	A) Pedicel B) Thalamus	C) Petiole	D) Stipules	
76.	Thalamus is not –			(Pg. 72, E)
	A) Swollen end of pedicel	B) Different whorl	arranged on i	t

	C) Accessory whorl		D) Re	ceptacle for di	fferent whorl	
77.	Choose the correct stater	nent-	/	1		(Pg. 72, E)
	A) Calyx, corolla, are acc	essory organ				,
	B) Androecium, gynoeci		ive orga	an		
	C) Perianth present in lil	y	D) All	of these		
78.	Perianth is					(Pg. 72, E)
	A) Indistinct calyx & cor	olla	B) Fus	ed corolla & a	ndroecium	
	C) Reproductive organ		D) No	ne of these		
79.	Bisexual flowers is –					(Pg. 72, E)
	A) When a flowe <mark>r h</mark> as bo	oth androecium &	gynoed	cium		
	B) Present in Solanaceae,	Liliaceae				
	C) Present in mustard an	nd Pea				
	D) All o <mark>f th</mark> ese					
80.	How many of following	show Actinomor	ohi <mark>c, Zy</mark>	<mark>gom</mark> orphic re	spectively.	(Pg. 72, E)
	Must <mark>ard</mark> , datura, chilli, F	ea, Canna, bean,	gu <mark>lmo</mark> ł	<mark>ur, Cass</mark> ia		
	A) 3 <mark>, 4</mark> B)) 4, 3	C) 4, 4		D) None of	these
81.	Sta <mark>tement – I:</mark> when a flo	ower can <mark>be d</mark> ivid	ed into	two equal rad	ial halves in a	any radial plane
	pa <mark>ssi</mark> ng through the cent	re it is actinomor	ph <mark>ic flo</mark>	wer		
	St <mark>ate</mark> ment – II: when a fl	lower can be divi	ded into	o two similar h	<mark>alves o</mark> nly in	one
	pa <mark>rti</mark> cular vertical plane,	it is zygomorphic				(Pg. 72, E)
	A) <mark>St</mark> atement – I & II are	correct	B) Sta	tement – I is co	orrect	
	C) <mark>Sta</mark> tement – II is corre	ct only	D) Sta	tement – I & I	I are incorrec	t
82.	<i>Cas<mark>sia</mark> s</i> how -					(Pg. 72, E)
	A) R <mark>ace</mark> mose inflorescen	ce, zygomorphic				
	B) Rac <mark>em</mark> ose inflorescene	ce, actinomorphic				
	C) Cym <mark>ose</mark> inflorescence	-				
	D) Cymos <mark>e inf</mark> lorescence					
83.	Flower with leaf that fou	-				(Pg. 72, E)
	,) Ebracteate	C) Pet		D) Sessile	
84.	Flower with floral appen	dages 3 or multip				(Pg. 72, E)
	A) Tetramerous		,	merous		
~-	C) Triploid		,	ntamerous		
85.	In hypogynous flower w	0	-	0	-	(Pg. 73, E)
<i></i>	, ,) Corolla	C) An	droceium	D) Pistil	
86.	Which of following is mi	smatched				(Pg. 73, E)
	Column-I		Colur	nn-II		
		1. Mustard				
	A)					

	A) 'Standard' is large C) 'Keel' are smallest	-	B) 'Standard' overla D) Keel are fused	ps the two la	teral Keel.
103.	The aestivation in gul	-	2)1.001.0101.0000		(Pg. 74, E)
2001	A) Valvate	B) Twisted	C) Imbricate	D) Vexillary	
104.	Find odd one with rea	,	0)	2) (0.011002)	(Pg. 74, E)
	A) China rose	B) Cassia	C) Lady's finger	D) Cotton	(-8,,-)
	/	,	ph-5.5.1.3	,	
			oecium		
105.	Androecium compos				(Pg. 75, E)
	A) Sepals	B) Petal	C) Stamen	D) Carpel	(-8, -)
106.	Each anther is usually	,		, I	(Pg. 75, E)
	A) Bilobed; two		C) Tetralobed; four	-	
107.	Staminode is –			,	(Pg. 75, E)
	A) Fer <mark>tile</mark> stamen	B) Sterile stamen	C) Both A & B	D) None of	, 0 ,
108.	How many of followi	,		,	(Pg. 75, M)
	(i) Stamens united int	U U			
	(ii) Monoadelphous is		-	polydephous	s is in Citrus
	(iii) Variation in the le		-		
	(iv) Two bundle of sta	amens are diadelpho	us and when stamen	are united in	to two or more
	bu <mark>nd</mark> le i.e. polyadelp	hous			
	A) 1	B) 2	C) 3	D) 4	
		Paragraph-5.	5.1.4 Gynoecium		
109.	Fem <mark>ale</mark> reproductive	part of flower is -			(Pg. 75, E)
	A) A <mark>ndr</mark> oecium	B) Gynoecium	C) Petal	D) Sepal	
110.	Pollen grains receptiv	e surface is –			(Pg. 75, E)
	A) Stigma	B) Style	C) Ovary	D) Ovule	
111.	Placenta attach-				(Pg. 75, E)
	A) Ovule to ovary		B) Ovary to thalam	15	
	C) Ovary and other fl	oral part	D) None of these		
112.	Apocarpous is-				(Pg. 75, E)
	i) Free carpel		ii) Fused carpel		
	iii) Present in rose		iv) Present in lotus		
	v) Present in tomato				
	A) i, iii, iv	B) i, iii, v	C) ii, iii, iv	D) ii, iv, v	
113.	After fertilization, the	e ovary develop into	and ovule ma	tures into a $_$	·
					(Pg. 75, E)
	A) Fruit; fruit	B) Seed; fruit	,	D) Seed; see	
114.	Placentation is arrang	gement of with			(Pg. 75, E)
	A) Ovary; ovule		B) Placenta; embryo	sac	
	C) Ovule; ovary		D) None of these		

115. (Pg. 75, E)

A) Such placentation seen in Argemone

- B) The placenta is axial and the ovules are attached to it in an unilocular ovary
- C) Such placentation seen in china rose
- D) The placenta is axial and the ovules are attached to it in multilocular ovary as in *Dianthus*

a. Pea

Column II

b. Lemon

c. Argemone d. Primrose

e. Sunflower

B) 1 - d, 2 - c, 3 - a, 4 - b, 5 - e D) 1 - b, 2 - e, 3 - a, 4 - d, 5 - c

116. Match the column I and column II

- 1 Parietal
- 2 Axile
- 3 Ma<mark>rgi</mark>nal

4 Ba<mark>sa</mark>l

- 5 F<mark>ree</mark> central
- A) 1 c, 2 b, 3 a, 4 e, 5 d
- C) 1 e, 2 d, 3 a, 4 c, 5 b117. Choose the correct statement –

(Pg. 75, M)

(Pg. 75, E)

(Pg. 75, E)

(Pg. 76, E)

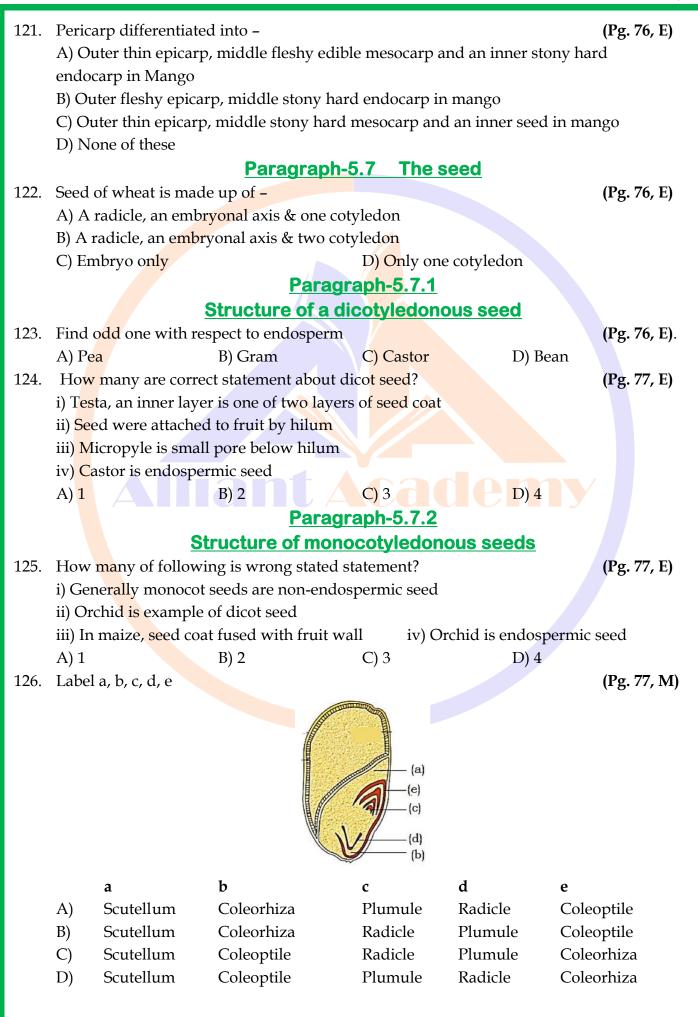
(Pg. 75, E)

A) Unilocular ovary becomes two chambered due to the formation of false septum as in mustard

- B) In Argemone ovary is two chambered due to the formation of true septum
- C) Axile placentation found in multilocular ovary as in tomato
- D) A & C both
- 118. Dianthus have –

A)	Cont and a second	B)	200
C)	Ste	D)	

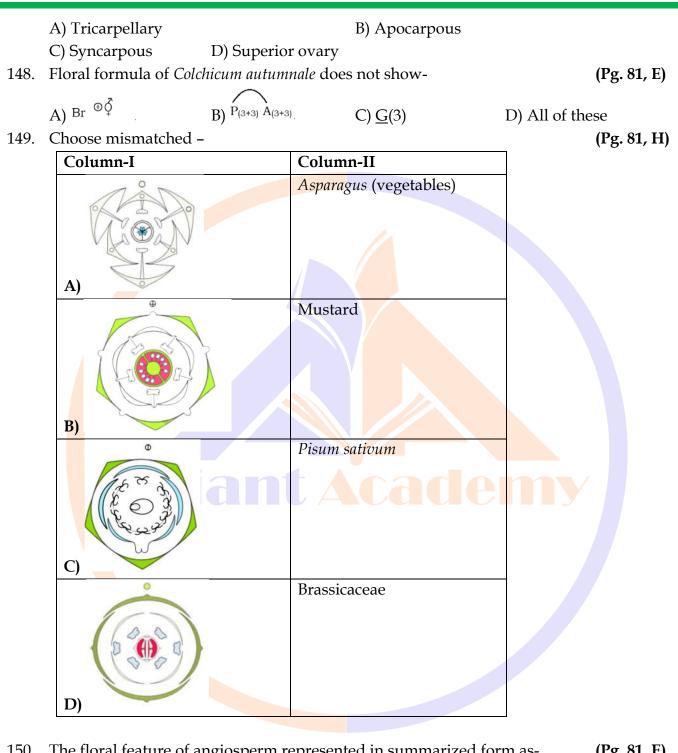
119. In Marigold -


- A) Same placentation found in sunflower
- B) Placenta develop at base of ovary
- C) Single ovule is attached to ovary
- D) All of those

Paragraph-5.6 The fruit

- 120. Parthenocarpic fruit is -
 - A) Develop after fertilization from ovary
 - B) Develop without fertilization
 - C) Develop after fertilization from thalamus
 - D) A & C both

27

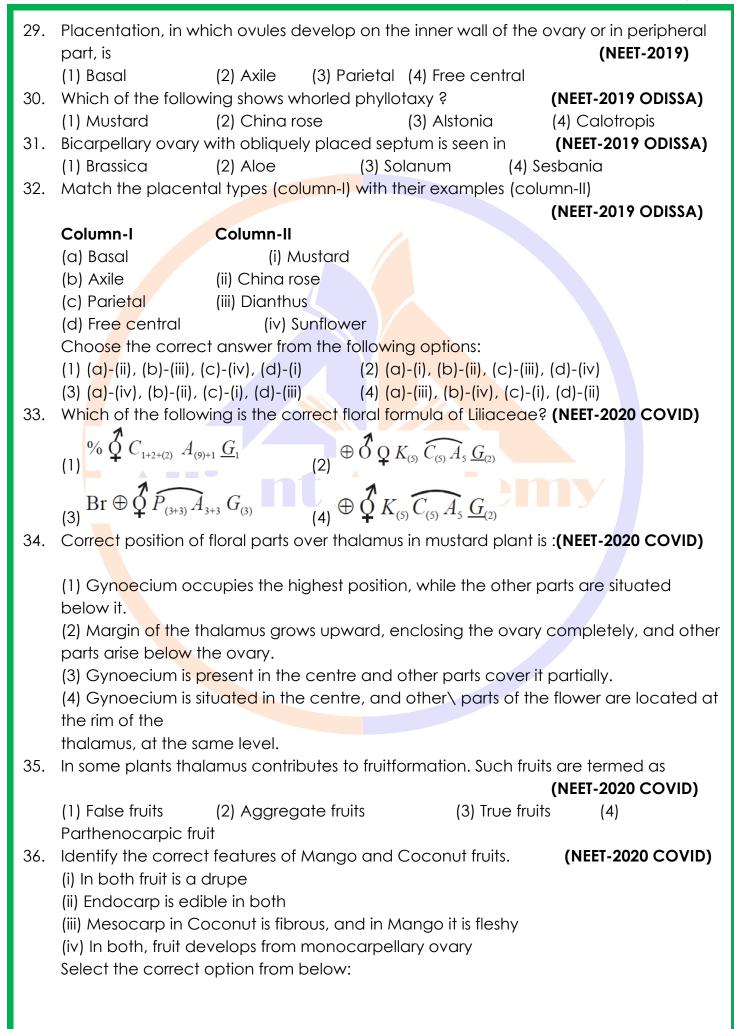

www.alliantacademy.com

www.alliantacademy.com

127.	Aleurone layer is –		(Pg. 77, E)
	A) Carbohydrate enrich layer	B) Proteinous layer	
	C) Lipid enrich layer	D) A and B	
128.	Scutellum present in		(Pg. 77, E)
	A) Orchid B) Castor	C) Pea	D) Gram
	<u>Parag</u>	<u>raph-5.8</u>	
	Semi-technica	al description of a	
	typical flo	wering plant-	
129.	Number of androecium in mustard is –		(Pg. 78, E)
	A) 2 B) 4	C) 6	D) 5
130.	How many of following is incorrect abou	t B <mark>rassic</mark> aceae (mustar	rd) actinomorphic,
	zygomorphic, bisexual, K4, superior ovar	y, <mark>C2+2</mark> , C(4)	(Pg. 78, E)
	A) 1 B) 2	C) 3	D) 4
		Description of son	ne
		ant family	
		5.9.1 Fabaceae	
131.	Fabaceae was earlier called as –		(Pg. 78, E)
	A) Leguminosae	B) Papilionoideae	
	C) Both A & B	D) Fabaceae	
132.			(Pg. 79, E)
	Alldir	a de	
		Ĭ	
	L	1041	
	A) L.S of carpel of pea	B) Fruit of pea	
	C) T.S. of carpel of pea	D) Androecium of F	200
133.	Calyx of fabaceae show-	D) Androectum of I	(Pg. 79, E)
155.	A) Polypetalous	B) Polysepalous	(I g. 7), L)
	C) Valvate aestivation	D) Both B & C	
134.		D) Dour D & C	(Pg. 79, E)
104.	A) Ten in number	B) 9 are united	(1 5. 7 5, 2)
	C) 1 is free	D) All of these	
135.		,	(Pg. 79, E)
100.	Arhar, groundnut, Indigofera, muliathi, S		
	A) O B) 1	C) 2	D) 3
136.	The correct floral formula of sunhemp is-	,	(Pg. 79, E)
	$ \begin{array}{c} \mathbf{A} \\ \mathbf{A} \\ \mathbf{B} \\ \mathbf{A} \end{array} \qquad $		
	$ \stackrel{A)}{\overset{B)}{=}} \stackrel{\bigoplus}{\overset{\bigoplus}{}} \stackrel{\bigwedge}{\overset{\bigoplus}{}} \stackrel{C_{1+2+2}}{\overset{(5)}{=}} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=}} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=}} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=}} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=}} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=}} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=}} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{G_1}{\overset{\oplus}{=} \stackrel{A_{(9)+1}}{\overset{\oplus}{=} \stackrel{A_{(9)+1}}{\overset{B_{(9)+1}}{B_{(9)+$		
	% $\bigcup_{+} \mathbf{k}_{(5)} \mathbf{C}_5 \mathbf{A}_{10} \mathbf{G}_2$		
	$\stackrel{\text{D)}}{\textcircled{\oplus}} \stackrel{\frown}{O} \stackrel{\frown}{P_{3+3}} \stackrel{\frown}{A_{3+3}} \stackrel{\frown}{\underline{G}_3}$		

Paragraph-5.9.2 Solanaceae							
137.	Which of the following is potato family		(Pg. 79, E)				
	A) Fabaceae B) Solanaceae	C) Liliaceae	D) Brassicaceae				
138.	Find out one with respect to Solanaceae		(Pg. 80, E)				
	A) Alternate phyllotaxy	B) Exstipulate					
	C) Reticulate venation	D) Pulvinate					
139.	In <i>Solanum</i> , inflorescene is-	,	(Pg. 80, E)				
	A) Racemose B) Cymose	C) Solitary	D) B and C				
140.	How many of following term is not cor		,				
	Bicarpellary, obligately placed, apocarp		-				
	many ovules, free – central placentation		(Pg. 80, E)				
	A) 0 B) 1	C) 2	D) 3				
141.	Persistant calyx found in-		(Pg. 80, E)				
	A) Brinjal B) Pea	C) Onion	D) Colchicine				
		0,011011	2) communic				
	1						
	$\bigoplus \ \ \bigoplus \ \ K_{(5)} \ \widehat{C_{(5)}} \ A_5 \ \underline{G_{(2)}} $						
142.							
	is floral formula of how many of follow	ring-					
	Al <mark>oe,</mark> belladonna, ashwagandha, mulia	thi, sunhemp, <i>Indigofer</i>	a, <mark>Gloriosa У</mark> (Pg. 80, E)				
	A) 1 B) 2	C) 3	D) 4				
143.	Mak <mark>oi p</mark> lant –		(Pg. 80, E)				
	A) Sol <mark>an</mark> um nigrum	B) Solanum tuberos	ит				
	C) Allium	D) Petunia					
Paragraph-5.9.3							
Liliaceae							
144.	Given diagram is -		(Pg. 81, E)				
	029	99999900					
	100 M						
		T					
		- .					
	A) Flower of <i>Allium</i>	B) Inflorescence of	Allium				
	C) Inflorescence of dicot family	D) Racemose					
145.	145. How many of following are endospermous seed.						
	Aloe, Asparagus, Tulip, Potato, Tomato, Pea, Petunia, Chilli, Sesbania, Trifolium,						
	Lupin, Muliathi, Ashwagandha, Colchica		(Pg. 81, E)				
	A) 10 B) 8	C) 15	D) 5				
146.	Onion show-		(Pg. 81, E)				
	A) Axile placentation	B) Parietal placent	ation				
	C) Free central placentation	D) Basal placentat	ion				
147.	Gynoceium of Aloe is not-		(Pg. 81, E)				

The floral feature of angiosperm represented in summarized form as-150. A) Floral diagram B) Floral formula C) A and B D) None of these


(Pg. 81, E)

NEET PREVIOUS YEARS QUESTIONS

					_
1.	Sweet potato is a mod			[2018]
_	(a) stem (-	(c) rhizome	(d) tap root	_
2.	Pneumatophores occu	ur in		[2018]
	(a) halophytes		(b) free-floating hyd		
	(c) submerged hydrop	phytes		(d) carnivorous	
_	plants				
3.	Plants which produce	characteristic pneum	atophores and show		
	·			[2017]
	(a) halophytes ((d) mesophytes	_
4.	In Bougainvillea, thorns			[2017]
	(a) adventitious root ((c) leaf	(d) stipules	
5.	Which of the following		ation?	[2017]	-
	(a) Pitcher of Nepenth			(b) Thorns of citr	US.
	(c) <mark>Te</mark> ndrils of cucumb	er.		(d) Flattened	
	structures of Opuntia.				
6.	Co <mark>co</mark> nut fruit is a			[2017]]
	(a) Berry ((c) Capsule	(d) Drupe	
7.	The morphological nat	ture of the edi <mark>ble</mark> p <mark>a</mark> rt	of coconut is		
				[2017]
	(a) <mark>cot</mark> yledon (b) endosperm	(c) pericarp	(d) perisperm	
8.	Stem <mark>s m</mark> odified into flo	it green organs perfor	ming the functions o		
	as			[2016]]
	(a) clad <mark>ode</mark> s (b) phyllodes	(c) phylloclades	(d) scales	
9.	The stand <mark>ard</mark> petal of			[2016]]
	(a) carina (b) pappus	(c) vexillum	(d) corona	
10.	Proximal end of the filo	ament of stamen is att	ached to the	•	
				[2016]
		b) connective	(c) placenta	(d) thalamus or	
	petal				
11.	, 0			[2016]
	(a) plumule (1	(c) coleoptile		
12.	Tricarpellary syncarpol	us gynoecium is found	in flowers of	•	
				[2016]
		b) Solanaceae	(c) fabaceae	(d) poaceae	
13.	Which of the following	pairs is not correctly r	natched?	[2015]]
	Mode of reproduction	Example			
	(a) Rhizome	Banana			
	(b) Binary fission(c) Conidia	Sargassum Penicillium			
	(d) Offset	Water hyacinth			

www.alliantacademy.com

14.	Leaves become mod				[2015]
15.	(a) Pea Flowers are unisexua		(c) Silk cotton	(d) Opunt	[2015]
16.	(a) Cucumber		(c) Onion	(d) Pea	[2015]
10.	Perigynous flowers ar (a) Cucumber		(c) Rose	(d) Guava	
17.	Which one of the foll	owing fruits is parthenod	carpic?		[2015]
	(a) Apple	(b) Jackfruit	(c) Banana	(d) Brinjal	
18.	The wheat grain has	an embryo with one, la	rge, shieldshaped co	otyledon kr	nown as [2015]
	(a) coleorrhiza	(b) scutellum	(c) coleoptile	(d) epibla	st
19.	Axile placentation is				[2015]
00	(a) lemon		(c) Argemone		
20.		nustard, brinjal, pota <mark>to</mark> ,	guava, cucumber, d	onion and t	
	many plants have su (a) Six	(b) Three	(c) Four	(d) Five	[2015]
21.	Coconut water from			(u) me	[2015]
۷۱,	(a) free nuclear end		(b) innermost layers	s of the see	
	(c) degenerated nuc			(d) immat	
	em <mark>ry</mark> o.	ant			
	# CK CAG				
22.	$\phi \neq \frac{m_{(5)}}{m_{(5)}} \frac{\phi_{(5)}}{m_{5}} \frac{\phi_{(2)}}{m_{5}}$ is the	ne floral formula of	•		[2015]
	(d) sespania	(D) Petunia	(C) Brassica	(d) Allium	
23.		istic feature of flower of	:		
	[2015]		(a) Tamata		
24.	(a) Indigofera	(b) Aloe e underground stem is:	(c) Tomato	(d) Tulip	[2014]
24.	(a) Carrot	(b) Groundnut	(c) Sweet notato	(d) Potat	
25.		sepals or petals overla			
	direction, the conditi				[2014]
	(a) Vexillary	(b) Imbricate	(c) Twisted	(d) Valvat	
26.	Placenta and perico	rp are both edible port	ions in		[2014]
	(a) apple	(b) banana	(c) tomato	(d) potato)
27.	An aggregate fruit is	one which develops fro	om		[2014]
	(a) multicarpellary, sy	yncarpous gynoecium.	(b) multicarpellary,	apocarpus	5
	gynoecium.				
	(c) complete inflores		(d) multicarpellary,	superior ov	•
28.		owing statement is corr			[2014]
		es is not endospermic.		henocarpi	c fruit.
		aleurone layer is preser	n in maize grain.		
	(d) A sterile pistil is cc				

				w.amantacaaciny.com
	(1) (i), (iii) and (iv) only only	(2) (i), (ii) and (iii) or	nly (3) (i) and (iv) on	ly (4) (i) and (ii)
37.	The roots that originate fr	om the base of the s	tem are	(NEET-2020)
07.	1) Lateral roots	2) Fibrous roo		
	•	2/1101003100	is Sjillindry	10013 4/1100
20	roots			
38.	Ray florets have:			(NEET-2020)
	1) Half inferior ovary	2) Interior ovary	3) Superior ovary	4) Hypogynous
	ovary			
39.	The ovary is half inferior in			(NEET-2020)
	1) Plum	2) Brinjal	3) Mustard	4) Sunflower
40.	Diadelphous stamens are	found in:		[NEET-2021]
	1) Citrus 2) Pea	3) China rose and a	citrus 4) China rose	
41.	Match L <mark>ist –</mark> I with List – II			[NEET-2021]
	Lis <mark>t –</mark> I	List –	11	
	a) where a	i) Brass	icaceae	
	$% Q K_{(5)} C_{1+2+(2)} $	$A_{(9)+1}\underline{G}_1$		
	b) 1	ii) Liliac	000	
	^{b)} ⊕OK C A-G		ede	
	∓ (5) • (5)5 <u></u> 2			
	c) $\oplus OP = A = G = G$	iii) Faba	ceae	
	a) % $\oint K_{(5)}C_{1+2+(2)}$ b) $\oplus \oint K_{(5)}\widehat{C_{(5)}A_5G_2}$ c) $\oplus \oint \widehat{P_{(3+3)}A_{3+3}G_{(3)}}$ d) $\oplus \oint K_{2+2}C_4A_{2-4}G_3$			
	d) OK CA. G	iv) Solar	naceae	
	¥2+2°4 -2-4 <u>-</u>	(2)		
	a b c d			
	1) i ii iii i∨			
	2) ii iii i∨ i			
÷	3) i∨ ii l iii			
	4) iii i∨ ii i			
42.	Which one of the follow	na plants show vexil	arv aestivation and di	adelphous
	stamens?	U		
	1) Colchium autumnale	2) Pisur	n sativum	[NEET-2022]
	3) allium cepa		num nigrum	[]
43.	The flowers are Zygomo	•		[NEET-2022]
40.	-	ilmohar c) Cas	sia d) Datura	
	, , ,			
	e) Chilly	war from the antices	aiyon bolowi	
	Choose the correct ans	•	•	
	, , ,		only 4) c, d, e c	•
44.	Identify the correct set o			[NEET-2022]
	a) The leaflets are modi	·		•
	b) Axillary buds form sler			
	c) Stem is flattened and	tleshy in opuntia an	d modified to perform	the function of
	leaves			

d) Rhizophora shows vertically upward growing roots that help to get oxygen for respiration

e) Subaerially growing stems in grasses and strawberry help in vegetative propagation.

Choose the correct answer from the options given below

- 1) b and c only
- 3) b, c, d and e only

2) a and d only

4) a, b, d and e only

Alliant Academy

NCERT LINE BY LINE QUESTIONS – ANSWER

1)	B	2) C	3) C	4) B	5) A	6) D	7) A	8) B	9) D	10) B
11)	C	12) B	13) D	14) B	15) B	16) A	17) B	18) D	19) B	20) A
21)	D	22) B	23) A	24) A	25) A	26) B	27) A	28) B	29) A	30) B
31)	Α	32) B	33) C	34) B	35) A	36) C	37) A	38) A	39) B	40) B
41)	Α	42) D	43) A	44) D	45) D	46) D	47) A	48) A	49) A	50) A
51)	Α	52) C	53) A	54) C	55) B	56) A	57) B	58) B	59) B	60) A
61)	B	62) D	63) A	64) B	65) D	66) A	67) D	68) D	69) B	70) C
71)	A	72) B	73) A	74) D	75) B	76) C	77) D	78) A	79) D	80) A
81)	Α	82) A	83) A	84) B	85) D	86) B	87) A	88) D	89) B	90) B
91)	B	92) A	93) A	94) A	95) A	96) A	97) D	98) B	99) D	100) A
101)	C	102) B	103) C	104) B	105) C	106) A	107) B	108) D	109) B	110) A
111)	Α	112) A	113) C	114) C	115) C	116) A	117) D	118) C	119) D	120) B
121)	Α	122) A	123) C	124) B	125) C	126) A	127) B	128) A	129) C	130) D
131)) B	132) A	133) C	134) D	135) A	136) B	137) B	138) D	139) D	140) D
141)	A	142) B	143) A	144) B	145) A	146) A	147) B	148) B	149) B	150) C
NEET PREVIOUS YEARS QUESTIONS - KEY										
1 (b)	2	(a) .	3 (a)	4 (b)	5 (a)	6 (d)	7 (b)	<mark>8 (</mark> c)	9 (c) 1	l 0 (d)
11 <mark>(d)</mark>	12	2 (a)	13 (b)	14 (d)	15 (a)	16 (c)	17 (c)	<mark>18 (b)</mark>	19 (a) 2	20 (a)
21 <mark>(a)</mark>	22	2 (b)	23 (a)	24 (d)	25 (b)	26 (c)	27 (b)	28 (c)	29 (3) 3	30 (3)
31 (<mark>3</mark>)	32	2 (3)	33 (3)	34 (1)	35 (1)	36 (1)	37 (2)	38 (2)	39 (1) 4	0 (2)
A1 (A)	40		42 (2)	44 (2)						

41 (4) 42 (2) 43 (2) 44 (3)

NEET PREVIOUS YEARS QUESTIONS - Explanations

- 1. (b) Sweet potato is a modified adventitious root for storage of food. Rhizomes are underground modified stem. Tap root is primary root directly elongated from the radicle.
- 2. (a)
- 3. (a) Halophytes growing in saline soils show vivipary for seed germination and have pneumatophores for

gaseous exchange.

- 4. (b) 5. (a)
- 6. (d) Coconut fruit is a drupe. A drupe is a fleshy fruit with thin skin and central stone containing the seed.
- 7. (b) The edible part of coconut is its endosperm. Coconut has double endosperm, liquid endosperm and cellular.
- 8. (c) 9. (c) 10. (d) 11. (d) 12. (a)
- 13. (b) Binary fission usually takes place in Amoeba, Paramecium and Euglena.

14. (d)

- 15. (a) The flowers of cucumber are unisexual, it means they have only male flowers or only female flowers.
- 16. (c) Ovary is partly superior and partly inferior in perigynous flower.

17. (c) Parthenocarpic fruits (e.g., banana) are produced without fertilisation of ovule.

18. (b)

- 19. (a)
- 20. (a) Superior ovary is found in china rose, mustard, brinjal, potato, onion and tulip. Guava and cucumber have inferior ovary.
- 21. (a) Coconut water is the free nuclear endosperm.
- 22. (b) Floral formula of Petunia (solanaceae) is

 $\bigoplus \phi K_{(5)} \widehat{C_{(5)}} A_5 G_{(2)}$.

- 23. (a) Indigofera is a member of family fabaceae. It has keel type of floral structure in which two anterior fused petals are present.
- 24. (d)
- 25. (b) If the margins of sepals or petals overlap one another but not in any particular direction as in Cassia and gulmohur, the aestivation is called imbricate.
- 26. (c) In tomato, edible part is pericarp and placenta.
- 27. (b) Aggregate fruits (etaerio) develop from the multicarpellary apocarpous ovary. They are of following types- etaerio of follicles, etaerio of achenes, etaerio of berries, etaerio of drupes.

28. (c)

- 37. The roots that originate from the base of the stem are adventitious roots or fibrous roots
- 38. Ray florets are present in head inflorescence of asteraceae, these followers contains inferior ovary
- 39 Peach, Plum and rose shows half inferior ovary
- 40. Diadelphous stamens are found in Fabaceae members pea
- 41. The floral formula of

Brassicaceae family	_	$\bigoplus \bigoplus^{2} K_{2+2}C_{4}A_{2+4}G_{\underline{(2)}}$
Solanacae family	_	$\bigoplus \bigcap^{2} K_{(5)} \stackrel{\frown}{C_{(5)}} A_{5} \stackrel{\bullet}{=} \underline{G}_{(2)}$
Fabaceae family	- %	
Liliaceae family	_	$\bigoplus \widehat{\mathcal{Q}} \widehat{P_{(3+3)}} \widehat{A_{3+3}} \underline{G}_{(3)}$

So a(iii), b(iv), c(ii), d(i) is correct matching.

- 42. Pisum sativum show vexillary aestivation and diadelphous stamens
- 43. In Cassia & Gulmohar flowers are Zygomorphic In mustard, Datura and chilli the flowers are actinomorphic
- B, C, D & E statements are correctIn citrus and *Bougainvillea* the stem is modified into pointed hard thorns