
6. ANATOMY OF FLOWERING PLANTS

Biology Smart Booklet
Theory + NCERT MCQs + NEET PYQs

ANATOMY OF FLOWERING PLANTS

Anatomy

Anatomy is the study of internal structure of organisms. Plant anatomy includes organization and structure of tissues. Tissue is a group is cells having a common origin and usually performing a common function.

The Tissue

A group of cells having a common origin and usually performing common function are called tissues.

There are two types of tissues (i) Meristematic (ii) Permanent.

Meristematic Tissues: The meristematic tissue is made up of the cells which have the capability to divide. Meristems in plants are restricted to a specialized regions and responsible to the growth of plants.

Permanent Tissues: The permanent tissues are derived from meristematic tissue, are composed of cells, which have lost the ability to divide and have become structurally and functionally specialised.

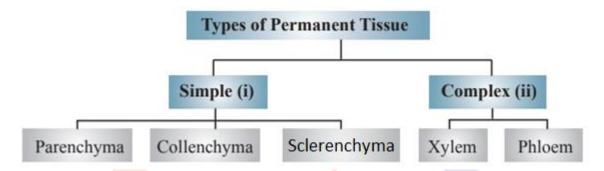
Meristematic tissues:

There are three types of Meristem:

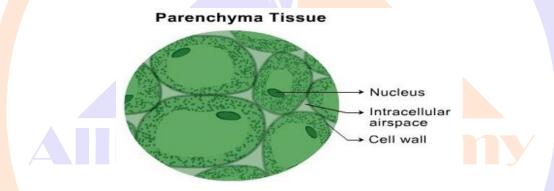
- Apical meristem
- Intercalary meristem
- Lateral meristem

Apical meristem: Meristematic tissue is a simple tissue composed of group of similar and immature cells which can divide and form new cells. The meristem which occurs at tips of roots and shoots are called apical meristem.

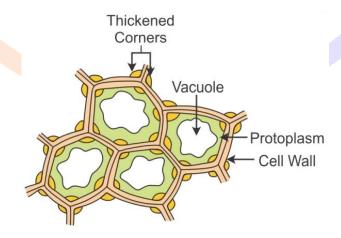
Intercalary meristem: Intercalary meristem occurs between mature tissues especially in grasses. Both apical meristems and intercalary meristems are primary meristems because they appear early in life of a plant and help to form the primary plant body.


Lateral meristem: The meristem which occurs on the sides and takes part in increasing girth of the plants are called Lateral meristem. Intrafascicular cambium in the primary lateral meristem. Vascular cambium, cork cambium are secondary meristem.

Axillary bud: The buds which are present in the axils of leaves (Consist of cells left behind from shoot apical meristem) and are responsible for forming branches of flowers.

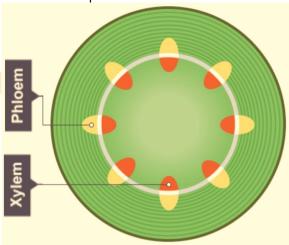

Permanent tissues

The permanent tissues are derived from meristematic tissue, are composed of


cells, which have lost the ability to divide and have become structurally and functionally specialized.

Parenchyma: Parenchyma is a simple permanent living tissue which is made up of thin-walled isodiametric cells. Each cell encloses a large central vacuole and peripheral cytoplasm containing nucleus. They are found in non-woody and soft areas of stem, root, leaves, fruits and flowers. They store the food and provide turgicity to softer parts of plant.

Collenchyma: Collenchyma consists of cells which are much thickened at corner due to cellulose, hemicellulose and pectin. Oval, spherical or polygonal often contain chlorophyll. They provide mechanical support to the growing parts of the plants like young stem.


Sclerenchyma: Sclerenchyma are supportive tissue having highly thick-walled cells with little or no protoplasm due to deposition of cellulose or lignin. They are of two types: fibers and sclereids. They provide mechanical support to mature plant organs to tolerate bending, shearing, compression etc.

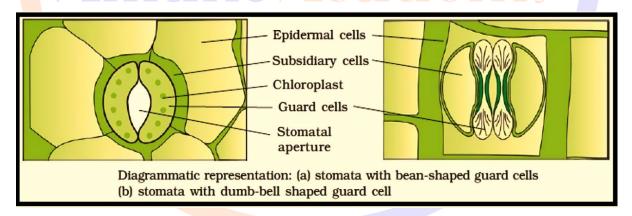
Fiber Sclereids Lumen 1.Brachysclereid Transverse section 2.Macrosclereid 4.Astrosclereid Lumen 5.Filiform sclereid

Complex tissue: Permanent tissues having all cells similar in structure and function are called simple permanent tissues and those having different kinds of cells are called complex tissue.

Xylem: Xylem consists of tracheid's vessels, xylem fibers and xylem parenchyma. It conducts water and minerals from roots to other parts of plant.

Phloem: Phloem consists of sieve tube elements, companion cells, phloem fibers and phloem parenchyma; Phloem transports the food material from leaves to various parts of the plant.

Endarch: Primary xylem is of two types- protoxylem and metaxylem. In stem, protoxylem lies in centre and metaxylem towards periphery. This type of primary xylem is called endarch.

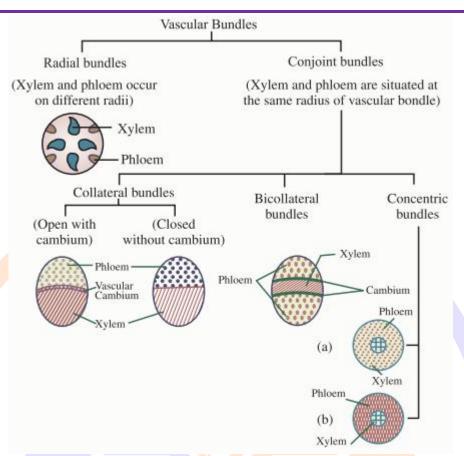

Exarch: In roots, protoxylem lies in periphery and metaxylem lies towards the center. This type of primary xylem is called exarch.

Tissue System

The tissue system is divided into three categories based on a division of labor. Each system usually consists of a combination of tissue organizations that perform specific functions.

Epidermal Tissue System

- It forms the outermost covering of whole plant body, which consists of epidermal cells, stomata, epidermal appendages (trichomes and hairs).
- Epidermis is single layered, parenchymatous with waxy thick layers of cuticle to prevent water loss.
- Stomata is present in epidermis of leaves. It regulates the transpiration and gaseous exchange. In dicots, stomata are bean-shaped having two guard cells closing the stomatal pore. In monocots, stoma is dumbbell shaped. Guard cells contain chloroplasts and help in opening and closing of stomata.
- Guard cells are surrounded by subsidiary cells. The stomatal aperture, guard cells and the surrounding subsidiary cells are together called stomatal apparatus.
- Epidermis also contains a number of hairs. Root hairs are unicellular elongation of epidermal cells. Trichomes are present on stems, which are multicellular, branched or un-branched preventing water loss due to transpiration.



The ground Tissue System

- All the tissue between epidermis and vascular bundle forms the ground tissues. It consists of simple permanent tissues. Parenchyma is present in pericycle, cortex, pith and medullary rays in stem and roots.
- In leaves the mesophyll, chloroplast containing cell, forms the ground tissues.

The vascular tissue system

It includes vascular bundles which are made up of xylem and phloem.

Anatomy of Root

Dicot Root	Monocot Root	
Cortex is comparatively narrow.	Cortex is very wide.	
Endodermis is less thicknened	Endodermal cells are highly thickened	
cas <mark>par</mark> ian strips are more	Casparian strips are visible only in young	
prom <mark>ine</mark> nt.	roots.	
The xyl <mark>em</mark> and phloem bundles	Xylem and phloem are more than 6	
varies from 2 to 5.	(polyarch).	
Pith is abs <mark>ent or</mark> very small.	Well developed pith is present.	
Secondary growth takes place.	Secondary growth is absent.	

Casparian Strips

The tangential as well as radial walls of endodermal cells of dicot roots have deposition of water impermeable, waxy material, suberin in the form of casparian strips.

Anatomy of Stem

Dicot Stem	Monocot Stem
The ground tissue is differentiated into cortex, endodermis, pericycle and pitch.	The ground tissue is made up of similar cells
The vascular bundles are arranged in a ring.	The vascular bundles are scattered throughout the ground tissue.

Vascular bundles are open, without Surrounded bundle sheath and wedge-shaped outline.	Vascular bundles are closed, by sclerenchymatous bundle sheath, oval or rounded in shape.
The stem shows secondary growth due to presence of cambium between xylem and phloem.	· · · · · · · · · · · · · · · · · · ·

Secondary growth dicot stem

An increase in the girth (diameter) in plants. Vascular cambium and cork cambium (lateral meristems) are involved in secondary growth.

- Formation of cambial ring: Intrafascicular cambium + interfascicular cambium.
- Formation of secondary xylem and secondary phloem from cambial ring.
- Formation of spring wood and autumn wood.
- Development of cork cambium(phellogen).

Secondary growth in dicot roots

Secondary growth in dicot roots occur with the activity of secondary meristems (vascular cambium). This cambium is produced in the stelle and cortex, and results in increasing the girth of dicot roots.

Spring wood

It is also called early wood in which cambium is active Vessels with wide cavities & Light in colour, low density presence of Xylary elements more.

Autumn Wood

Also called late wood in which cambium is less active presence of Xylary elements is less Vessels are narrow & Dark, high density.

Heartwood

Central or innermost region of stem which is hard, durable and resistant to attack of Microorganisms and insects & Not involved in conduction of water, gives mechanical support to stem.

Sapwood

Peripheral region stem, light in colour Involved in conduction of water and mineral.

Anatomy of Leaf

Dorsiventral (Dicot) Leaf	Isobilateral (monocot) Leaf
Stomata are absent.	Stomata present on both sides.
Mesophyll is differentiated into two parts.	Mesophyll is undifferentiated.
Bundle sheath is single layered.	Bundle sheath is double layered

	Hypodermis of the mid-rib region is sclerenchymatous.
Stomata have kidney shaped guard cells.	Stomata have kidney shaped dumb cells.

Cork Cambium

- Meristematic tissue which develops in the cortex region is called cork cambium or phellogen.
- The phellogen cuts off cells on both sides. The outer cells differentiate to form cork or phellem while the inner cells differentiate into secondary cortex or phelloderm.
- Phellogen, phellem and phelloderm are collectively called periderm.
- Due to activity of the cork cambium, pressure builds up on the remaining layers peripheral

Lenticels

- At certain regions, the phellogen cuts off closely arranged parenchymatous cells on the outer side instead of cork cells. These parenchymatous cells soon rupture the epidermis, forming a lens-shaped openings called lenticels.
- Lenticels permit the exchange of gases between the outer atmosphere and the internal tissue of the stem.

Secondary Growth in Roots

- The vascular cambium of the dicot root originates from the tissue located just below the phloem bundles. A portion of pericycle tissue present above the protoxylem forms a continuous wavy ring. It gradually becomes circular. Rest of the steps are similar as in dicot stem.
- Secondary growth takes place in stems and roots of gymnosperms. No secondary growth occurs in monocots.

NCERT LINE BY LINE QUESTIONS

<u>Paragraph 6.1 The Tissues</u> <u>Paragraph 6.1.1 Meristematic tissues</u>:

- 1. Apical meristems
 A) Occur at root tip
 B) Produce primary tissues
 C) Regenerate parts of plant
 D) Both A & B
- 2. During leaf formation and stem elongation, some cells of apical meristem left behind form-(Pg. 84, E)
 - A) Primary cell.

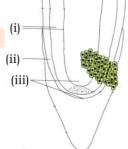
 C) Axillary bud
 Intercalary meristem

 B) Intercalary meristem

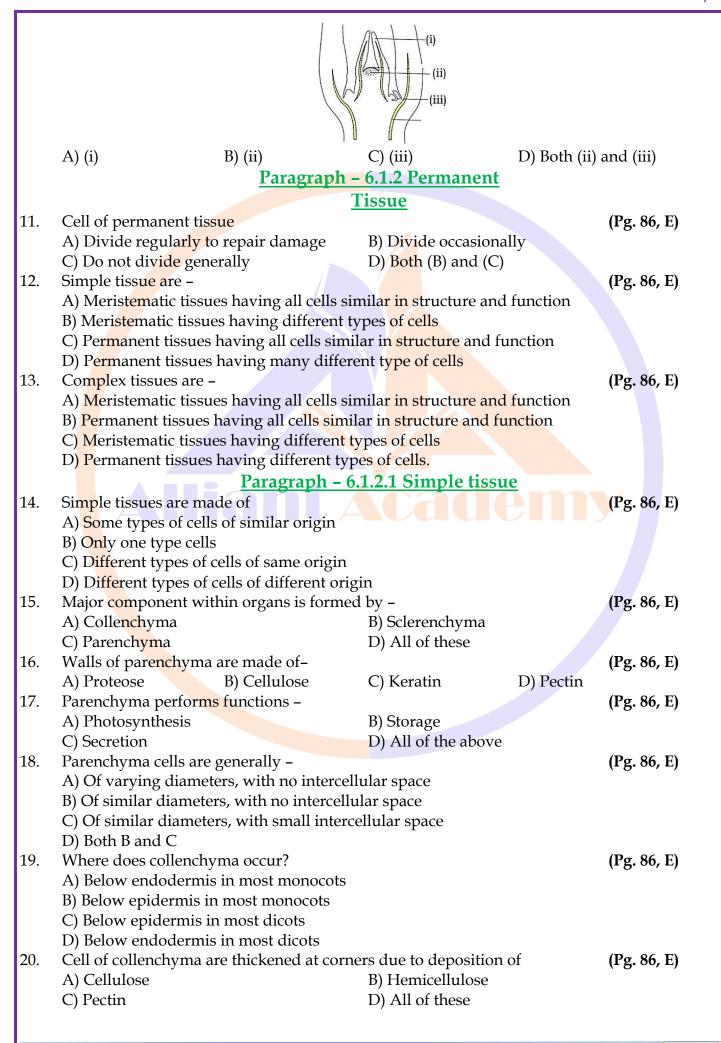
 D) Interfascicular cambium
 - Intercalary meristem
 A) Occur in grasses
 B) Occur between mature tissue
 C) Both A & B
 D) None
- 4. Primary meristem
 A) Appear later in life of plant
 B) Appear early in life of plant
 Appear early in life of plant
- C) Regenerates parts of plant D) Both B & C

 5. Primary body of plant is formed by
 (Pg. 85, E)
- A) Meristem

 C) Both A & B


 D) None
- 6. Lateral meristem are- (Pg. 85, E)
 - A) Type of primary meristem
 B) Appearing early in life of plant
 - C) Responsible for producing secondary tissues
 - D) B<mark>oth</mark> A & B

3.


- 7. Secondary meristem include- (Pg. 85, E)
- A) Fascicular vascular cambium
 C) Secondary phloem
 D) Both A and B
- 8. Meristem that occur in mature region of root and shoot of plant-A) Apical meristem B) Intercalary meristem
- A) Apical meristem

 C) Lateral meristem

 D) None of these
- 9. Identify the correct labels- (Pg. 85, E)

- A) (i) cortex, (ii) Protoderm, (iii) –initial of central cylinder & cortex
- B) (i) Protoderm, (ii) cortex, (iii) central cylinder
- C) (i) central cylinder, (ii) cortex, (iii) Protoderm
- D) (i) central cylinder, (ii) Protodrem, (iii) cortex
- 10. Identify the axillary bud in given figure (Pg. 85, E)

21.	Collenchyma cells –			(Pg. 86, E)
	A) May be polygonal and never contain chlo	oroplasts.		
	B) May be polygonal and often contain chlor	_		
	C) May be oval and contain chloroplasts	1		
	D) Both B and C			
22.	Collenchyma cells			(Pg. 86, E)
<i>ZZ</i> .				(1 g. 60, L)
	A) Have no intercellular spaces			
	B) Have large intercellular spaces			
	C) May or may not have intercellular spaces			
	D) None of these			
23.	Mechanical support in plants is provides by			(Pg. 86, E)
	A) Parenchyma I	B) Collenchyma		
	C) Sclerenchyma	D) Both B and C		
24.	Choose the best option			(Pg. 86, M)
	A) All collenchymatous cells Assimilate food	d		
	B) No collenchymatous cells assimilate food			
	C) Some collenchymatous cells do not assim			
	D) All collenchymatous cells do not assimila			
25.				(Da 96 E)
25.	Collenchyma provide mechanical support to		ana anler	(Pg. 86, E)
	· ·	B) Petiole of leaf org	ans only	
24		D) All of these		(D 06 E)
26.	Id <mark>en</mark> tify the given figure			(Pg. 86, E)
			Y	
			b	
		(iii)		
	(i) (ii)	(iv)		
	A) (i) – parenchyma, (ii) – fibre, (iii) – sclerei	d, (iv) - collenchym	ıa	
	B) (i) - sclereids, (ii) - fibre, (iii) - parenchyn	na, (iv) collenchyma	L	
	C) (i) - collenchyma, (ii) - sclerids, (iii) - fob			
	D) (i) - collenchyma, (ii) fibre, (iii) - sclereid			
27.	Sclenenchyma cells are –	-, () P J		(Pg. 86, E)
		B) Usually dead with	nout protopla	` ' '
		D) Usually living wi	-	
28.	Read the given statements –	J) Coddily IIVIIIg WI	thout protop.	(Pg. 86, M)
20.				(1 g. 60, 1VI)
	(i) Sclereids are found in leaves of tea.	.1		
	(ii) Fibres generally occur single in various p			
	(iii) Sclerenchyma provides mechanical supp	port to young stems	•	
	(iv) Parenchyma cells have thick walls.			
	(v) Collenchyma cells are thickened at corne	ers.		
	How many are correct			
	A) 2 B) 3	C) 4	D) 1	
29.	Pulp of pear has which type of sclerenchym	a cells-		(Pg. 87, E)
	A) Sclereids B) Fibres (C) Tracheids	D) Trichome	es
	•	oh - 6.1.2.2	,	
	_	ex Tissues		
20		A 1100UC5		(Da 97 E)
30.	Complex tissues are –			(Pg. 87, E)
	A) Made of one of cells, working as unit	• •		
	B) Made of many types of cells, working as a			
	C) Made of one type of cells, working separa	ately		

31.	D) Made of many types of cells, working s Xylem has following functions except— A) Conducting water from roots to upper		(Pg. 87, E)	
	B) Conducting minerals from leaves to roo			
	C) Providing mechanical strength to plant	parts		
	D) Conducting sap from roots to leaves		<u></u>	
32.	Xylem tissue consists of-		(Pg. 87, E)	
	A) Sieve tube, companion cells, fibres, par	enchyma		
	B) Sieve cells, vessels, fibres, parenchyma			
	C) Vessels, tracheids, sieve tube, fibres			
22	D) Vessels, tracheid, fibres, parenchyma		(D~ 97 E)	
33.	Gymnosperms lack-	R) Companion colls	(Pg. 87, E)	
	A) Xylem vesselsC) Sieve tubes and companion cells	B) Companion cells D) All of the above		
34.	Phloem of gymnosperms possess-	D) All of the above	(Pg. 87, E)	
J 1.	A) Albuminous cells	B) Companion cells	(1 g. 07, L)	
	C) Sieve tube	D) Both (B) and (C)		
35.	Xylem has all dead cells except-	<i>b) boar</i> (<i>b</i>) <i>area</i> (<i>c</i>)	(Pg. 87, E)	
	A) Xylem parenchyma	B) Xylem fibres	(= 8, 3, 7 =)	
	C) Xylem vessels	D) Xylem tracheids		
36.	Ray parenchymatous cells help in –		(Pg. 87, E)	
	A) Radial conduction of food	B) Axial conduction of water		
	C) Axial conduction of food	D) Radial conduction of water		
37.	Food materials can be stored in xylem par	enchyma in all of these forms exce	pt –	
			(Pg. 87, E)	
	A) Starch B) Fat	C) Tannin D) None		
38.	In stems,		(Pg. 87, E)	
	A) Protoxylem lies towards centre and me			
	B) Protoxylem lies towards centre and me	2 2 2		
	C) Metaxylem lies towards centre and pro			
20	D) Metaxylem lies towards centre and pro	otoxylem towards periphery called		
39.	In roots – A) Protoxylem lies towards centre and me	stavylom towards poriphory called	(Pg. 87, E)	
	B) Protoxylem lies towards centre and me			
	,			
	C) Metaxylem lies towards centre and protoxylem towards periphery called er D) Metaxylem lies towards centre and protoxylem towards periphery called ex			
40.	A maturāe sieve elements –	voxy iem to wards periphery canca	(Pg. 88, E)	
10.	A) Have peripheral nucleus		(= 8, 55, =)	
	B) Have peripheral cytoplasm and no nucleus			
	C) Have no vacuole and no nucleus			
	D) Have large vacuole and peripheral nuc	eleus		
41.	Phloem fibres –		(Pg. 88, E)	
	A) Are made of parenchyma	B) Are made of collenchyma		
	C) Present in primary phloem	D) Present in secondary phloem		
42.	Which of the statements about Phloem is o	correct?	(Pg. 88, M)	
	A) Protoploem consists of narrow sieve tu			
	B) Metaphloem consists of narrow sieve to			
	C) Protopholem consists of bigger sieve tu			
	D) Both protophloem and metaphloem ha			
	<u>Paraş</u>	<u>graph – 6.2</u>		

		The t	<u>issue system</u>				
4 3.	The three types of tiss	sue systems – epide	rmal ground and vas	scular systems	are classified based		
	on their-	, ,	O	J	(Pg. 88, E)		
	A) Function	B) Location	C) Structure	D) Both (B)	()		
	,	,	graph - 6.2.1	, ()	()		
		_	_				
Epidermal tissue system							
44.	Outer layer of primar		C) Erriganna	D) Estadam	(Pg. 88, E)		
4 F	A) Epiblema	B) Epidermis	C) Epicarp	D) Ectoderi			
45.	Waxy layer on epider	mis-	D) : 11 1 :11		(Pg. 89, E)		
	A) is called trichome		B) is called epibler				
4.6	C) is absent in roots		D) help in exchang	ge of gases	(D 00 E)		
46.	Consider the followir	_			(Pg. 89, E)		
	i) Epidermal cells are						
	ii) Epidermis is usual						
	iii) Stomata are usual	-					
	iv) Outer walls of gua		nd inn <mark>er walls</mark> are thi	n.			
	v) Su <mark>bsi</mark> diary cells are	_					
	How many of these s	tatements are incorr	ect?				
	A) 2	B) 1	C) 3	D) 4			
47.	Sto <mark>m</mark> atal apparatus c	onsists of -			(Pg. 89, E)		
	A) Stomatal aperture	only	B) Stomatal apertu	<mark>ire and</mark> guard (cells		
	C) Subsidiary cells		D) Both (B) and (C	C)			
48.	E <mark>pid</mark> ermal cells modi	fy to form			(Pg. 89, E)		
	A) Trichomes only	ant	B) Trichomes, Roc	ot hairs, Stomat	ta /		
	C) Trichomes, Root h	air, Subsidiary cells	D) Root hairs only				
49.	Tri <mark>ch</mark> omes –				(Pg. 89, E)		
	A) Present on stem ar						
	B) Pr <mark>ese</mark> nt on root and						
	C) Present on stem ar	nd are unicellular					
	D) Present on root an	d are unicellular					
		<u>Parag</u>	graph – 6.2.2				
		The groun	d Tissue System				
50.	All tissues are include				(Pg. 89, E)		
	A) Cortex	B) Pith	C) Pericycle	D) Epiderm			
51.	In leaves, mesophyll:	is present in –			(Pg. 89, E)		
	A) Epidermal tissue s		B) Ground tissue s	system	, ,		
	C) Vascular tissue sys		D) Both (A) & (B)				
	,		graph - 6.2.3				
			lar Tissue System	1			
52.	In dicots stem, which		· · · · · · · · · · · · · · · · · · ·	-	(Pg. 90, E)		
<i>52.</i>		-		sed type vasci	` ` '		
	A) Cambium present between xylem & phloem, known as closed type vascular bund B) Cambium absent between xylem & phloem, known as closed type vascular bundle						
	C) Cambium present outside xylem & phloem, known as open type vascular by						
	D) Cambium present	-	_				
53.	A : Monocot have clo			en type vascui	ai buildie.		
<i>JJ</i> .	R: monocots do not s	• -			(Pg. 90, H)		
					(1 5. 70, 11)		
	A) Both A and R are cor		_				
	B) Both A & R are correct and R is not the explanation of AC) A is correct and R is incorrect						
	C) 11 to correct and it is incorrect						

D) Both A & R are incorrect 54. Read given statements in context of given figure (Pg. 90, E) (A) (B) i) A is xylem and B is phloem ii) A is phloem and B is xylem iii) Primary xylem in figure is endarch type. iv) Primary in figure is exarch type. Choose the correct statements A) (i) and (iii) B) (i) and (iv) C) (ii) and (iii) D) (ii) and (iv) The given figure can be vascular bundle of 55. (Pg. 90, E) (A) A) Shoot of sunflower B) Shoot of grass C) Root of sunflower D) Root of grass Paragraph - 6.3 Anatomy of Dicot & Monocot Plants For understand the tissue organization of roots, stems and leaves better, it is convenient to 56. study-(Pg. 90, E) A) Longitudinal section of young and growing zones of organs B) Transverse section of young & growing zones of organs C) Longitudinal section of mature zones of organs D) Transverse section of mature zones of organs Paragraph - 6.3.1 **Dicotyledonous Root** Choose correct order of cells from outside to inside in a sunflower root-57. (Pg. 90, E) A) Epidermis – endodermis – cortex – pericycle B) Epiblema – cortex – endodermis – pericycle C) Epiblema – cortex – pericycle – endodermis D) Epidermis – endodermis – pericycle – cortex 58. Suberin is deposited on -(Pg. 90, E) A) Tangential walls of epidermal cells B) Radial walls of cortical cells C) Tangential walls of endodermal cells D) radial walls of epidermal cells 59. The substance that casparian strips is made up of is -(Pg. 91, E) A) waxy B) water – impermeable C) suberin D) all of these

Initiation of lateral roots in dicot during secondary growth occurs in -

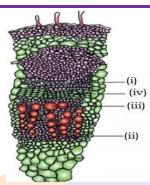
B) Pericycle

Initiation of vascular cambium in dicot root during secondary growth occurs from -

D) Conjunctive tissue

60.

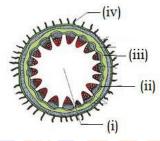
61.


A) Endodermal cells

C) Medullary ray

(Pg. 91, E)

(Pg. 91, E) A) Thin walled parenchymatous cells B) Thick walled collenchyma cells C) Thinn walled endodermal cells D) Thick walled parenchyma cells 62. Which of the following is true about A) Parenchymatous and lie outside phloem B) Parenchymatous and lie outside endodermis C) Collenchymatous and lie between xylem and phloem D) Parenchymatous and lie between xylem & phloem 63. Endodermis is present in dicot root in (Pg. 91, E) A) Two layer with little intercellular spaces B) Two layer without any intercellular spaces C) Single layer with little intercellular spaces D) Single layer without any intercellular spaces 64. Cortex of dicot root consists of -(Pg. 91, E) A) Multi layers of thick walled parenchyma B) Multi layers of thin walled parenchyma C) Single layer of thick walled parenchyma D) Single layer of thin walled parenchyma 65. Innermost layer of cortex in dicot root is -(Pg. 91, E) A) Pericycle B) Hypodermis C) Endodermis D) Pith 66. Parenchyma cells are generally thin walled. An example of thick-walled parenchyma in dicot root is (Pg. 91, E) D) Hypodermis A) Pith B) Pericycle C) Endodermis 67. Stele includes (Pg. 91, E) A) Endodermis, pericycle, pith B) Endodermis, pericycle, vascular bundles C) Pericycle, vascular bundle, pith D) Endodermis, vascular bundle, pith (Pg. 91, E) 68. Identify the figure (i) & (ii) (ii) (i) A) (i) – T.S of dicot root (ii) – T.S of monocot root B) (i) – T.S of dicot stem (ii) – T.S of monocot stem C) (i) – T.S of monocot root (ii) – T.S of dicot root D) (i) - L.S of monocot stem (ii) - L.S of dicot root 69. Identify the correct labels of monocot root T.S (Pg. 91, E) A) (i)- cortex, (ii)- endodermis, (iii)- pericycle B) (ii)- cortex, (i)- endodermis, (iii)- pericycle C) (iii)- cortex, (ii)- endodermis, (i)- pericycle D) (i)- cortex, (iii)- endodermis, (ii)- pericycle Paragraph - 6.3.2


	Monocoty	<u>ledonous Root</u>	
70.	Xylem bundles in monocot root-		(Pg. 91, E)
	A) Are fewer than dicot root	B) Are less than six	(-87-)
	C) Are polyarchy	D) All of the above	
71.	Secondary growth in monocot roots occur	•	(Pg. 91, E)
/ 1.	A) By vascular cambium	B) By interfascicular cambium	(1 g. 71, L)
	C) Both A & B	D) None of these	
	•	,	
		raph - 6.3.3	
	·	edonous Stem	
72.	Epidermis of dicot stem-		(Pg. 91, E)
	A) Is called epiblema	B) Lacks stomata	
	C) Has a thin layer of cuticle	D) Lacks trichomes	
73.	Cortex in dicot stem is found between-		(Pg. 92, E)
	A) Epider <mark>mis</mark> and endodermis	B) Endodermis and pericycle	
	C) Pericycle and pith	D) Endodermis and pith	
74.	Hypodermis of dicot stem is made of-		(Pg. 92, E)
	A) Pa <mark>re</mark> nchyma	B) Collenchyma	
	C) S <mark>cle</mark> renchyma	D) All of these	
<i>7</i> 5.	Starch sheath is found in dicot stem in		(Pg. 92, E)
	A) Endodermis B) Cortex	C) Pericycle D) Pith	() , ,
76.	Cortical cells dicot stem has-		(Pg. 92, E)
	A) No intercellular spaces		(-8, 3-) -)
	B) Inconspicuous intercellular spaces		
	C) Conspicuous intercellular spaces		
	D) Very large intercellular spaces		
<i>7</i> 7.	Pericycle of dicot stem is present in the fo	rm of-	(Pg. 92, E)
, , ,	A) Semi – square patches of collenchyma		(1 g. 32, L)
	B) Semi – lunar patches of sclerenchyma		
	C) Semi – lunar patches of collenchyma		
	D) Semi – lunar patches of parenchyma		
78.	Medullary rays are -		(Pg 02 E)
76.	A) Axially placed, parenchymatous		(Pg. 92, E)
	, , , , , , , , , , , , , , , , , , , ,		
	B) Axially placed, collenchymatous		
	C) Radially placed, parenchymatous		
70	D) Radially placed, collenchymatous		(D - 02 E)
79.	Location of medullary rays -		(Pg. 92, E)
	A) Above endodermis		
	B) Between endodermis and pericycle		
	C) Between pericycle and cortex		
0.0	D) Between vascular bundles		(D. 00 E)
80.	In sunflower stem, vascular bundle is-		(Pg. 93 E)
	A) Conjoint, closed, exarch protoxylem		
	B) radial, open, endarch protoxylem		
	C) conjoint, open, exarch protoxylem		
	D) conjoint, open, endarch protoxylem	_	
81.	which of these is incorrect about pith of d		(Pg. 93, E)
	A) Parenchymatous cells	B) No intercellular space	
	C) Central portion of stem	D) Large intercellular space	
82.	Identify the correct labels		(Pg. 92, E)

- A) (i)- protoxylem, (ii)- cambium, (iii)-phloem, (iv)- metaxylem
- B) (ii)- protoxylem, (iv)- cambium, (i)-phloem, (iii)- metaxylem
- C) (iv)- protoxylem, (i)- cambium, (ii)- phloem, (iii)- metaxylem
- D) (iii)- protoxylem, (iv)- cambium, (i)- phloem, (ii)- metaxylem
- 83. Identify endodermis in the given figure-

(Pg. 92, E)

(Pg. 93, M)

A) (i)

- B) (ii)
- C) (iv)
- D) (iii)

Paragraph - 6.3.4

Monocot Stem

- 84. Select the correct match of columns A & B
 - Column A
 - i Hypodermis of grasses stem
 - ii Hypodermis of sunflower stem
 - iii Bundle sheath of grasses stem
 - iv Ground tissue of grasses stem
 - A) (i)-2, (ii)-3
- B) (iv)- 1, (iii)- 1
- Column B
- 1) parenchyma 2) Collenchyma
- 3) Sclerenchyma

- C) (iii)-3, (i)-3
- D) (ii)-1, (iv)-3

- 85. In monocot stem,
 - A) Peripheral vascular bundles are generally smaller than central ones
 - B) Central vascular bundles are generally smaller than peripheral ones
 - C) Both peripheral and central are almost same sized
 - D) None of these
- Phloem parenchyma is absent in-86.

(Pg. 93, E)

(Pg. 93, E)

- A) Gymnosperms
- B) Monocots
- C) Both
- D) None

87. The given figure is (Pg. 92, E)

- A) Monocot root
- B) Dicot root
- C) Monocot stem
- D) Dicot stem

Paragraph - 6.3.5

Dorsiventral leaf (Dicot)

- 88. Read the given statements and choose the number of correct statements
- (Pg. 93, M)

(i) Leaf of dicot lack cuticle (ii) Stomata on adaxial side of epidermis is more in number than abaxial side (iii) Mesophyll is the ground tissue in dicot leaf (iv) The adaxial epidermis may lack stomata A) 1 C) 3 D) 4 B) 2 89. In the leaf of sunflower, mesophyll lies-(Pg. 93, E) A) Between epidermis and cortex B) Between adaxial epidermis and abaxial epidermis C) Between endodermis and pericycle D) Between pericycle and vascular bundles 90. Which of the given statements about dicot leaf is incorrect? (Pg. 93, M) A) The abaxial palisade parenchyma is made of elongated cells B) Spongy parenchyma is oval or round C) The spongy parenchyma has large spaces between cells D) The parenchyma on adaxial side of leaf are arranged vertically & parallel to each other 91. Consider the statements given below-(Pg. 93, M) a) Size of vascular bundle in leaf depend upon size veins b) Vascular bundles in leaf are surrounded by bundle sheath cells A) (a) is correct & (b) is incorrect B) (a) is incorrect & (b) is correct C) Both are correct D) Both ate incorrect 92. Identify the correct option in context of given figures (Pg. 93, E) (ii) A) (i)- dicot stem, (ii)- monocot stem B) (i)-dicot leaf, (ii)- monocot leaf C) (i)- monocot stem, (ii)- dicot stem D) (i)- monocot leaf, (ii)- dicot leaf Paragraph - 6.3.6 **Isobilateral Leaf (Monocot)** 93. Which of the following is correct for isobilateral leaves? (Pg. 94, E) A) Present in all angiosperms B) Two different types of mesophyll are found C) Stomata on both surfaces of mesophyll D) Has similar sizes of vascular bundles 94. In grasses, large, empty, colourless cells are called-(Pg. 94, E) A) Subsidiary cells B) Complementary cells D) None of these C) Cortical cells 95. Identify the incorrect statement in regards to bulliform cells-(Pg. 94, E) A) Present on abaxial side B) Empty cells C) Makes leaf curl inward when flaccid D) Helps to minimize water loss 96. Identify correct labels for given figure. (Pg. 94, E)

	A) (i)- adaxial epidermis (ii)- abaxial epider B) (ii)- adaxial epidermis (i)- abaxial epider C) (i)- adaxial epidermis (ii)- abaxial epider D) (ii)- adaxial epidermis (i)- abaxial epider Parag	rmis, (iii)- xylem (i rmis, (iv)- xylem (i	v)- phloem iii)- phloem	
		ary growth		
97.	Increase in girth of plant- A) Involves lateral meristem C) Involves apical meristem	B) Involves intered D) All of these	calary meristem	(Pg. 94, E)
		aph - 6.4.1		
		r Cambium		
98.	Vas <mark>cu</mark> lar cambium-			(Pg. 94, E)
	i) I <mark>s m</mark> eristematic			
	ii) Present in patches between xylem and p			
	iii) Present as a single layer between xylem			
	iv) Forms complete ring later How many o			-
	A) 1 B) 2	C) 3	D) 4	
		ph - 6.4.1.1		
	<u>Formation</u>	of cambial ring		
99.	In dicot stem, cambium cells present between	een xylem & phloe	em is-	(Pg. 94, E)
	A) In <mark>tra</mark> fasicular cambium	B) Interfascicular	cambium	
	C) Co <mark>rk c</mark> ambium	D) Cortical camb	ium	
100.	Interfas <mark>icu</mark> lar cambium is formed by-			(Pg. 94, E)
	A) Peric <mark>ycle</mark> cells	B) Endodermal co		
	C) Medullary cells	D) Complementa	ry cells	
	<u>Paragra</u>	ph - 6.4.1.2		
	Activity of	Cambial Ring		
101.	Cambial ring cuts off new cells-			(Pg. 95, E)
	A) Towards inner side only	B) Towards outer	side only	•
	C) Towards inner and outer side both	D) Along its own		
102.	Cambial ring cuts off new cells -	,		(Pg. 95, E)
	A) Towards pith, called secondary phloem			
	B) Towards pith, called secondary cambium	m		
	C) Towards pith, called secondary medulla	ary rays		
	D) Towards pith, called secondary xylem			
103.	Cambial ring cut off –			(Pg. 95, E)
	A) More cells on outer side	B) More cells on i	nner side	
	C) Equal cells on both sides	D) Cells randoml	y	
104.	Assertion: secondary xylem form a compa	ct mass.		
	Reason: cambium is lesser active on outer	side comparativel	y.	
	Choose the best option-			(Pg. 95, H)
	A) Assertion & Reason both are correct and	d Reason is correct	t explanation for	
	Assertion.			

B) As	ssertion & Reason both are correct and Reason is	s not the correct explanation for Assertion
	C) Assertion is correct but Reason is incorrect	
	D) Assertion is incorrect but Reason is correct	
105.	Secondary medullary rays are-	(Pg. 95, E)
	A) Narrow bands of parenchyma	
	B) Narrow bands of meristem	
	C) Wide bands of parenchyma	
	D) Wide bands of meristem	
106.	Which of these is correct about activity of cam	oial ring? (Pg. 95, E)
	A) Secondary xylem crushes primary xylem	
	B) Secondary xylem crushes primary phloem	
	C) Secondary xylem crushes secondary phloen	n
	D) Both B & C	
107.	Identify the secondary xylem in the figure-	(Pg. 95, E)
	(i) -	
	(ii)	
	(:::)	
	(iii)	
	(iv)	
		(iii) D) (iv)
	<u>Paragraph</u>	<u>- 6.4.1.3</u>
	Spring wood and	autumn wood
108.	Activity of cambium is under control of-	(Pg. 96, E)
		Environmental factors
		Depend on season only
109.	In spring, cambium produce	(Pg. 96, E)
	A) Less xylary elements, having vessels with v	, ,
	B) More xylary elements, having vessels with	
	C) Less xylary elements, having vessels with n	
	D) More xylary elements, having vessels with	
110.	Select the characters of autumn wood from the	
,		Oark in colour
	, 9	High density
	The state of the s	Narrow vessels
	,	ii, iv, vi D) ii, iii, v
111.	Annual rings are constituted by-	(Pg. 96, E)
	A) Alternate concentric rings of 3 types of woo	, ,
	B) continuous concentric rings of 3 types of wo	
	C) Alternate concentric rings of 2 types of woo	
	D) continuous concentric rings of 2 types of wee	
	Paragraph	
110	Heartwood &	
112.	Heartwood is-	(Pg. 96, E)
		Dark in colour
110	,	None of these
113.	Consider the following statements about heart	wood- (Pg. 96, E)
	i) Lighter in colour	
	ii) Comprises dead elements	

	iii) Suberized walls				
	iv) Resistant to attack of micro-organisms				
	v) Conducts water and provide mechanical support to plant				
	How many of the statements are correct?				
	A) 2 B) 3	C) 4	D) 5		
	•	raph - 6.4.2	,		
		Cambium			
114.	Assertion: Cork cambium is needed due		ambium		
111,	Reason: Phellogen is present below endo	_	amoram		
	Select the appropriate answer-	acimo		(Pg. 96, E)	
	A) Both Assertion & Reason are correct			2 8. 30, 2)	
	B) Assertion is correct and Reason is wron	ησ			
	C) Assertion is wrong and Reason is corre				
	D) Both Assertion and Reason are wrong				
115.	Phellogen is made of-			Pg. 96, E)	
110.	A) Narrow, thick-walled, meristematic ce	lls		28. 30, 2)	
	B) Narrow, thin-walled, parenchyma				
	C) Narrow, thick-walled, parenchyma				
	D) Narrow, thin-walled, meristem				
116.	Phellogens cuts-			(Pg. 96, E)	
	A) Cork on inner side and phelloderm on	outside			
	B) Phellem on inner and secondary cortex				
	C) Bark on outside and secondary cortex				
	D) Phellem on outside and phelloderm or				
117.	Cork is impervious to water due to			Pg. 96, E)	
	A) Lignin B) Suberin	C) Keratin	D) Cellulose		
118.	Bark includes –			(Pg. 97, E)	
	A) S <mark>eco</mark> ndary xylem and periderm				
	B) Sec <mark>on</mark> dary phloem and periderm				
	C) Peri <mark>cycl</mark> e and vascular cambium				
	D) Pith a <mark>nd s</mark> tele				
119.	Phlloderm is –			(Pg. 97, E)	
	A) Parenchymatous	B) Collenchymatous			
	C) Sclerenchymatous	D) Meristematic			
120.	Lenticles are			(Pg. 97, E)	
	A) Circle - shaped	B) Rectangular			
	C) Lens – shaped	D) Polygonal shaped			
121.	Select the correct labels –			(Pg. 97, E)	
		(i)			
		(iii)			
		(ii)			
		880400			
	NOOD XETE	ensu (iv)			
	A) (i) – complimentary cells	B) (ii) – cork cambiur	n		
	C) (iii) – secondary cortex	D) (iv) - epidermis			
	<u>Parag</u>	raph - 6.4.3			
	Secondary Growth in Roots				
122.	In sunflower root. Vascular cambium is o		- ((Pg. 97, E)	
	A) Below phloem bundle	B) Of pericycle	•		
	*	, 1			

	C) Of interfascicular cambium	D) Both (A) & (B)		
123.	Secondary growth does not occur in –	•	g. 98, E)	
	A) Gymnosperm stem	B) Gymnosperm root		
101	C) Monocot	D) All of these		
124.	Identify the cambial ring –	(P	g. 98, E)	
	(ii)	6)		
	A) (i) B) (iii)	C) (iv) D) (ii)		
			_	
	NEET PREVIO	US YEARS QUESTIONS		
1.	Secondary xylem and phloem in dicot sten	n ar <mark>e prod</mark> uced by	[201	18]
	(a) apical meristems (b) vascular cambium		ogen	_
2.	Casparian strips occur in:		[2018]	
_,	(a) Epidermis (b) Pericycle (c) Endodermi	is (d) Cortex	[====]	
3.	Plants having little or no secondary growth		[201	18]
	(a) grasses (b) deciduous angiosperms			•
4.	Stomata in grass leaf are			
	[2018]			
	(a) dumb-bell shaped (b) kidney shaped	(c) barrel shaped (d) rectangular		
5.	Identify the wrong statement in context of		[201	[7]
	(a) It is highly durable.			
	(b) It conducts water and minerals efficient	tly.		
	(c) It comprises dead elements with highly	lignified walls.		
	(d) Organic compounds are deposited in it			
6.	The vascular cambium normally gives rise	to	[201	17]
		ondary xylem		
	· / -	elloderm		
7.	Which of the following facilitates opening	of stomatal aperture?	[201	17]
	(a) Decrease in turgidity of guard cells.			
	(b) Radial orientation of cellulose microfib			
	(c) Longitudinal orientation of cellulose mi		S.	
0	(d) Contraction of outer wall of guard cells		[004 =]	
8.	Which of the following is made up of dead		[2017]	
0	(a) Collenchyma (b) Phellem (c) Phloem (d)		[2017]	
9.	Root hairs develop from the region of		[2017]	
10	(a) elongation (b) root cap (c) meristemate		[201	161
10.	Specialised epidermal cells surrounding the	=	[201	roj
	(a) complementary cells(b) subsidiary(c) bulliform cells(d) lenticels	cens		
11.	Vascular bundles in monocotyledons are c	ansidered closed because		
11.	[2015]	onsidered closed because		
	(a) cambium is absent.	(b) there are no vessels with pe	rforations	
	(c) xylem is surrounded all around by phlo	• /	mandio.	
	(d) a bundle sheath surrounds each bundle			
	(*) - 2 22001 Suite Suite Suite Suite			

12.	A major characteristic of the monocot root is the presence of (a) scattered vascular bundles.	15]
	(b) vasculature without cambium.(c) cambium sandwiched between phloem and xylem along the radius.	
	(d) open vascular bundles.	
13.	Read the different components from (A) to (D) in the list given below and identify the correct	
	order of the components with reference to their arrangement from outer side to inner side in a	a
	woody dicot stem[2015] (A) Secondary cortex (B) Wood (C) Secondary phloem (D) Phellem	
	(a) A, B, D, C (b) D, A, C, B (c) D, C, A, B (d) C, D, B, A	
14.	In a ring girdled plant	
	[2015]	
	(a) the root dies first. (b) the shoot and root die together.	
1 =	(c) neither root nor shoot will die. (d) the shoot dies first.	
15.	Transmission tissue is characteristic feature of [2015]	
	(a) solid style (b) dry stigma (c) wet stigma (d) hollow style	
16.	You are given a fairly old piece of dicot stem and a dicot root. Which of the following	
	anat <mark>om</mark> ical structures will you use to distingui <mark>sh between the</mark> two?	
	[2014] (a) Secondary vylom (b) Secondary phloom (c) Protovylom (d) Cortical cells	
17.	(a) Secondary xylem (b) Secondary phloem (c) Protoxylem (d) Cortical cells Tracheids differ from other tracheary elements in	
	[<mark>201</mark> 4]	
	(a) having casparian strips. (b) being imperforate.	
10	(c) lacking nucleus. (d) being lignified.	(1
18.	Grass leaves curl inwards during very dry weather. Select the most appropriate reason from following:	ine
	(NEET-20)	19)
	(1) Closure of stomata (2) Flaccidity of bulliform cells	,
	(3) Shri <mark>nk</mark> age of air spaces in spongy mesophyll (4) Tyloses in vessels	
19.	Which of the statements given below is not trueabout formation of Annual Rings in trees?	
	(NEET-2019)	
	(1) Annual ring is a combination of spring wood and autumn wood produced in a year.	
	(2) Differential activity of cambium causes light and dark bands of tissue - early and late woo respectively	d
	(3) Activity of cambium depends upon variation in climate.	
	(4) Annual rings are not prominent in trees of temperate region.	
20.	In the dicot root the vascular cambium originates from :- (NET-2019	
	ODISSA)	
	(1) Tissue located below the phloem bundles and a portion of pericycle tissue above protoxylem.	
	(2) Cortical region.	
	(3) Parenchyma between endodermis and pericycle.	
	(4) Intrafascicular and interfascicular tissue in a ring.	
21.	Regeneration of damaged growing grass following grazing is largely due to :- (NEET-2019 ODISSA)	
	(1) Lateral meristem (2) Apical meristem (3) Intercalary meristem (4) Secondary	
	meristem	

22.	Large, empty col	ourless cells of	the adaxial	epidermis along the veins (NEFT)	of grass leaves are -2020 COVID)		
	(1) Lenticels cells	(2) Guard	cells	(3) Bundle sheath ce	•		
23.	Which of the foll COVID)	owing stateme	nts about co	rk cambium is incorrect?	(NEET-2020		
	(1) It forms secon	5		` /	part of periderm		
. .				icels (4) It is a couple of la	=		
24.	The transverse se 2020)	ection of a plan	t shows follo	owing anatomical features	s. (NEET-		
	a) large number	of scattered va	scular bundl	es surrounded by bundle	sheath.		
	b) Large conspic	<mark>uou</mark> s parenchy	nchymatous	ground tissue,			
	c) Vascular bund		d closed				
	d) Phloem paren	•					
	Identify the cate		nd its part.				
	1) Dicotyledonou			2) Monocotyledono	us stem		
	3) Monocotyledo		•	D <mark>icotyledono</mark> us stem	(2.17777 - 2.20)		
25.	Identify the incom				(NEET-2020)		
	· -			tc., heart wood is dark in	colour		
	•			ves mechanical support			
	3) <mark>Sap</mark> wood is in	volved in cond	luction of wa	ter and minerals from roo	<mark>ot l</mark> eaf.		
	4) <mark>Sa</mark> pwood is th	e innermost se	condary xy <mark>le</mark>	e <mark>m and is</mark> lighter in colour			
26.	Ma <mark>tc</mark> h List-I with	n List - II			[NEET-2021]		
	List-I		List	-II			
	(a) Lentice	ls	(i)	Phellogen			
	(b) Cork ca	mbium	(ii)	Suberin deposition			
	(c) Seconda	ary cortex	(ii)	Exchange of gases			
	(d) Cork		(iv)	Phelloderm			
	Choose the corre	ect answer from	n the options	given below			
	(a)	(b)	(c)	(d)			
	(1) (iii)	(i)	(iv)	(ii)			
	(2) (ii)	(iii)	(iv)	(i)			
	(3) (iv)	(ii)	(i) '	(iii)			
	(4) (iv)	(i)	(iii)	(ii)			
27.	Match list-1 witl		,		[NEET-2021]		
	List-I			List-II	-		
	a) Cells with acti	ve cell division	n capacity	i) Vascular tissues			
	b) Tissue having	all cells simila	r in	ii) Meristematic tissı	ıe		
	structure and fur	nction					
	c) Tissue having	different types	of cells	iii) Sclereids			
	d) Dead cells wit	• •	ened walls	iv) Simple tissue			
	and narrow lumen						
	Select the correct						
	1) a-iv, b-iii, c-ii,	d-i 2) a-i, b-ii	, c-iii,d-iv 3)	a-iii, b-ii, c-iv, d-i 4)	a-ii, b-iv, c-I, d-iii		

28. Select the correct pair [NEET-2021]

1)	In dicto leaves, vascular bundles are surrounded by large	Conjunctive tissue		
	thick-walled cells			
2)	Cells of medullary rays that form part of cambial ring	Interfascicular cambium		
3)	Loose parenchyma cells rupturing the epidermis and forming	Spongy parenchyma		
	a lens - shaped opening in bark			
4)	Large colorless empty cells in the epidermis of grass leaves	Subsidiary cells		

- 29. In old trees the greater part of secondary xylem is dark brown and resistant to insect attack due to: [NEET-2022]
 - (a) secretion of secondary metabolites and their deposition in the lumen of vessels
 - (b) deposition of organic compounds like tannins and resins the central layers of stem
 - (c) deposition of suberin and aromatic substances in the outer layer of stem
 - (d) deposition of tannins, gum, resin and aromatic substances in the peripheral layers of stem
 - (e) presence of parenchyma cells, functionally active xylem elements and essential oils Choose the correct answer from the options given below:
 - 1) (a) and (b) only

2) (c) and (d) only

3) (d) and (e) only

- 4) (b) and (d) only
- 30. Read the following statements about the vascular bundles:

[NEET-2022]

- a) In roots, xylem and phloem in a vascular bundle are arranged in an alternate manner along the different radii
- b) Conjoint closed vascular bundles do not possess cambium
- c) In open vascular bundles, cambium is present in between xylem and phloem
- d) The vascular bundles of dicotyledonous stem possess endarch protoxylem
- e) In monocotyledonous root, usually there are more than six xylem bundles present Choose the correct answer from the options given below:
- 1) a, b and d only

2) b, c, d, and e only

3) a, b, c and d only

- 4) a, b, c, d and e only
- 31. The anatomy of springwood shows some peculiar features. Identify the correct set of statements about springwood. [NEET-2022]
 - a) It is also called as the earlywood
 - b) In spring season cambium produces xylem elements with narrow vessels
 - c) It is lighter in colour
 - d) The springwood along with autumn wood shows alternate concentric rings forming annual rings
 - e) It has lower density

Choose the correct answer from the options given below:

1) a, b, d and e only

2) a, c, d and e only

3) a, b and d only

4) c, d and e only

NCERT LINE BY LINE QUESTIONS - ANSWERS

1) D	2) C	3) C	4) D	5) A	6) C	7) D	8) C	9) A	10) C
11) D	12) C	13) D	14) B	15) C	16) B	17) D	18) D	19) C	20) D
21) D	22) A	23) D	24) C	25) A	26) D	27) B	28) A	29) A	30) B
31) B	32) D	33) A	34) A	35) A	36) D	37) D	38) A	39) D	40) B
41) D	42) A	43) D	44) B	45) C	46) C	47) D	48) C	49) A	50) D
51) B	52) D	53) B	54) C	55) A	56) D	57) B	58) C	59) D	60) B
61) D	62) D	63) D	64) B	65) C	66) B	67) C	68) C	69) B	70) C
71) D	72) C	73) A	74) B	75) A	76) C	77) B	78) C	79) D	80) D
81) B	82) B	83) D	84) C	85) A	86) B	87) C	88) B	89) B	90) A
91) C	92) D	93) D	94) D	95) A	96) C	97) A	98) D	99) A	100) C
101) C	102) D	103) B	104) A	105) A	106) D	107) C	108) C	109) B	110) C
111) C	112) B	113) A	114) B	115) D	116) D	117) B	118) B	119) A	120) C
121) B	122) D	123) C	124) B						

NEET PREVIOUS YEARS QUESTIONS-ANSWERS

- 1 (b) 2 (c) 3 (a) 4 (a) 5 (b) 6 (b) 7 (b) 8 (b) 9 (d) 10 (b)
- 11 (a) 12 (b) 13 (b) 14 (a) 15 (a) 16 (c) 17 (b) 18 (2) 19 (4) 20 (1)
- **21** (3) **22** (4) **23** (1) **24** (2) **25** (4) **26** (1) **27** (4) **28** (2) **29** (1) **30** (4) **31** (2)

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS

- **1. (b)** Secondary tissues are generated from the growth of a cambium. Vascular cambium gives rise to secondary xylem to the inside, and to secondary phloem to the outside.
- **2.** (c) Casparian strip is a band of cell wall material deposited in the radial and transverse walls of the endodermis. Casparian strip is made of suberin and sometimes lignin.
- **3. (a)** Grasses are monocots and monocots usually do not have secondary growth. Palm like monocots have anomalous secondary growth.
- **4.** (a) Grass being a monocot, has dumb-bell shaped stomata in their leaves.
- **5. (b)** Heartwood is inactive physiologically due to deposition of organic compounds and formation of tyloses, so it will not conduct water and minerals.
- **6. (b)** During secondary growth in plants, vascular cambium gives rise to secondary xylem and secondary phloem. Phelloderm is formed by cork cambium. Periderm is the corky outer layer formed in secondary thickening.
- **7. (b)** Cellulose microfibrils are arranged radially rather than longitudinally which makes it easy for the stomata to open.
- **8. (b)** Cork cambium undergoes periclinal division and cuts off thick walled suberised dead cells towards outside
 - i.e., phellem (cork) and it cuts off thin walled living cells i.e., phelloderm on inner side.
- **9. (d)** In roots, the root hairs develop from the zone of maturation. This zone is differentiated zone thus, bearing root hairs.
- **10. (b)** Specialised epidermal cells surrounding the guard cells are known as subsidiary or accessory cell.
- 11. (a) Vascular bundles in monocotyledons are considered closed due to absence of cambium.
- 12. (b) Monocot root shows radial and closed vascular bundle (xylem & phloem).
- **13. (b)** The correct sequence from outerside to inner side in a woody dicot stem is as follows:

- Phellem Secondary cortex Secondary phloem- Wood
- **14.** (a) In a ring girdled plant, roots die first due to damage of phloem causing inhibition of translocation of food.
- **15. (a)** A solid style has transmission tissue which has large intercellular spaces. It allows growth of pollen tube in pistil.
- **16. (c)** Anatomically fairly old dicotyledonous root is distinguished from the dicotyledonous stem by position of protoxylem. In dicot roots, the protoxylem is located near the periphery of the vascular cylinder while in dicot stem, the protoxylem is located near the centre of vascular bundle *i.e.*, the xylem is endarch.
- 17. (b) The walls of vessels (tracheary elements) are lignified and less thicker than tracheids. The lumen is wider. Vessels differ from tracheids in having cell fusions arising through the dissolution of end walls.
- 24. All anatomical features related to monocotyledonous stem
- 25. Sapwood is the outermost secondary xylem and is lighter in colour
- Lenticels are meant for exchange of gases.
 Phellogen is also known as cork cambium.
 Phelloderm is also called secondary cortex because it is the cortex that develops during secondary growth. Cork has deposition of suberin in their cell walls when they get mature.
- 27. ii-i<mark>v-i</mark>-iv
- When the cells of medullary rays differentiated, they give rise to the new cambium called interfascicular cambium.
 - Loose parenchyma cells rupturing the epidermis and forming a lens-shaped opening in bark are called complementary cells.
 - Large colourless empty cells in the epidermis of grass leaves are called bulliform cells.
 - In dicot leave, vascular bundles are surrounded by large thick walled cells called bundle sheath cells.
- 29: a & b are correct deposition of suberin and aromatic substances in the <u>inner</u> layer of stem deposition of tannins, gum, resin and aromatic substances in the <u>central</u> layers of stem secondary xylem does not have presence of parenchyma cells, functionally active xylem elements
- 30. all are correct
- 31. 'b' is false. The spring wood is lighter in colour and has a lower density whereas the autumn wood is darker and has a higher density