6. THERMODYNAMICS

Chemistry Smart Booklet Theory + NCERT MCQs + Topicwise Practice MCQs+NEET PYQs

www.alliantacademy.com

THERMODYNAMICS

Introduction

Chemical thermodynamics deals with the relationship between various form of energy in a process. Thermodynamics deals with macroscopic properties. This chapter introduces a major subsidiary thermodynamic property, the Gibbs free energy which lets us express the spontaneity of a process in terms of the properties of the system. This chapter helps to explain why gases expand or diffuse.

System and Surrounding

- 1. **System:** A specific portion of universe under study which is seperated from rest of the universe with a boundary is called system.
- 2. **Surroundings:** Rest of the universe which might be in a position to exchange energy and matter with the system is known as surrounding.

Types of System:

- 1. **Open system:** System can be open if it can exchange both energy and matter with surroundings.
- 2. Closed system: System can be closed if it can exchange energy but not matter with surroundings.
- 3. **Isolated system:** System can be isolated if it can neither exchange energy nor matter with surroundings.

Extensive Properties

The properties which depend upon mass of the substance is known as extensive properties i.e., mass, volume, internal energy, enthalpy etc.

Intensive Properties

The properties which are independent of mass of the substance is known as intensive properties i.e., temperature, pressure, density, refractive index.

Thermodynamic State of a System

A state is the condition of a system as specified by its physical properties. We can describe the state of a gas by quoting its pressure (p), volume (V), temperature (T), amount (n) etc. Variables like p, V, T are called state variables or state functions because their values depend only on the state of the system and not on how it is reached.

State Functions

The thermodynamic parameters which depends only on initial and final states of system is known as state function. i.e., internal energy(E), Enthalpy (H), entropy (S), Gibb's free energy (G).

Path Functions

The thermodynamic parameters where value does not depend merely on initial and final state but depends upon the path followed is known as path function. i.e., heat (q), work done (W).

Thermodynamic Process

The sequence followed to change one thermodynamic state of a system into another is called thermodynamic process. The types of thermodynamic processes are:

- 1. **Isothermal process:** It is the process in which temperature is kept constant means temperature of initial and final state of system along with entire path of process is same.
- 2. **Isobaric process:** It is the process in which pressure is kept constant for entire process.
- 3. Isochoric process: It is the process in which volume is kept constant.
- 4. Adiabatic process: The process in which heat transaction across boundary is not allowed.
- 5. **Reversible process and Irreversible process:** In thermodynamics, a process is said to be reversible when energy change in each step of the process can be reversed by changing the variables such as pressure, volume or temperature acting on them. In such a process, the driving and opposing forces differ infinitesimally and the process can be reversed completely by increasing the opposing force by an infinitesimally small amount.

Any process which does not take place in the above mentioned manner is said to be an irreversible process. In an irreversible process the driving and opposing force differ by a large amount.

6. **Cyclic process:** It is the process which run in close loop means process in which initial and final states are identical.

Internal Energy

Every substance is associated with definite amount of energy that is called internal energy. It is an extensive property and a state function. Internal energy of ideal gases is a function of temperature only.

Pressure-Volume Work

It is the work done when the gas expands or contracts against the external pressure. Consider a cylinder containing one mole of an ideal gas fitted with a frictionless and weightless piston having an area of cross-section A. The total volume of the gas is Vi and the initial pressure of the gas inside P.

Let the external pressure acting on the piston is Pex. If the external pressure Pex is slightly greater than P piston moves downward till the pressure inside the cylinder becomes equal to Pex. Let this change be achieved in a single step and the final volume be Vf. During this compression, suppose the piston moves a very small distance Δl . Thus, the work done on the gas is given by,

$$\omega = -\int_{V_i}^{V_f} P_{ex} dv$$

Heat

The change in internal energy of a system can be brought about by the transfer of heat from the surroundings to the system or vice-versa. This exchange of energy between the system and surroundings is possible as a result of the temperature difference between them. This energy called heat is represented by Q.

First Law of Thermodynamics

First law of thermodynamics states the law of conservation of energy in a different manner. According to this law, whenever a quantity of one kind of energy disappears an equivalent amount of energy appears in some other form.

According to first law of thermodynamics,

 $\Delta U = q + W$

Where, Q = Heat change

W = Work done

 ΔU = Change in internal energy

Enthalpy (H)

The total heat content of a system at constant pressure is known as its enthalpy. Mathematically it is the sum of internal energy and pressure-volume energy

 $\Delta H = \Delta U + P \Delta V$

It is an extensive property and a state function. Increase in enthalpy H is equal to heat absorbed at constant pressure.

Heat Capacity

Heat capacity is amount of heat require to raise the temperature of a system by unity. It is represented as "C". It is an extensive property and temperature dependent.

Types of heat capacity

1. Specific heat: For 1 gram system the heat loose or gained by system to bring one unit change in temperature is called specific heat denoted by 's'. specific heat is the intensive property.

$$S=\frac{C}{m}$$

2. Molar heat capacity: It is heat capacity for a system having 1 mole of material. It is represented as Cm. It is an intensive property.

$$C_m = \frac{C}{m}$$

3. Heat capacity at constant volume: Heat capacity of a system in isochoric condition is called heat capacity at constant volume, it is represented as C_v means molar heat capacity at constant volume.

$$C_v = \frac{dU}{dT}$$

4. Heat capacity at constant pressure: Heat capacity of a system in isobaric condition. It is represented by C_p means molar heat capacity at constant pressure.

$$C_p = \frac{dH}{dT}$$

Relation between Cp and Cv

We know that,

 $\Delta H = \Delta U + P \Delta V \dots (i)$

As per ideal gas equation

 $P\Delta V = R\Delta T$ (ii)

From (i) and (ii)

 $\Delta H = \Delta U + R\Delta T$

 $\frac{\Delta H}{\Delta T} = \frac{\Delta U}{\Delta T} + R$

 $C_p = C_v + R$

 $C_p - C_v = R$

Hess's Law

According to Hess's law, If a reaction takes place in several steps then its standard reaction enthalpy is the sum of the standard enthalpies of the intermediate reactions into which the overall reaction may be divided at the same temperature.

1st method: C(s) + 0₂(g) → CO₂(g) = ΔH 2nd method: C(s) + $\frac{1}{2}$ O₂(g) → CO(g) = ΔH₁

$$\operatorname{CO}(\mathrm{s}) + \frac{1}{2}\operatorname{O}_2(\mathrm{g}) \to \operatorname{CO}_2(\mathrm{g}) = \Delta \mathrm{H}_2$$

According to Hess's law,

 $\Delta H = \Delta H_1 + \Delta H_2$

Application of Hess's Law

- 1. Calculation of enthalpy of formation.
- 2. Determination of standard enthalpies of reactions.

Bond Dissociation Energy

The energy required to break one mole bond of a particular type in gaseous molecule is known as bond dissociation energy. For example, we consider the dissociation of water,

 $H - OH(g) \rightarrow H(g) + OH(g) = \Delta H = 498 \text{ kJ/mol}$

Entropy

Entropy is a measure of degree of randomness or disorder in a system. Entropy is an extensive property and a state function.. Its value depends upon the amount of substance present in the system.

Second Law of Thermodynamics

This states that the entropy of the universe always increases in every spontaneous (natural) change.

Free Energy (G)

Gibb's free energy is defined as,

$\Delta G = \Delta H - T \Delta S$

H is enthalpy, S is entropy and T is the temperature on Kelvin scale.

Summary

- 1. System: A part of universe which is under investigation.
- 2. Surroundings: The rest of the universe which is not a part of the system.
- 3. **State of the system:** The conditions of existence of a system when its macroscopic properties have definite values.
- 4. **State functions:** The thermodynamic quantities which depend only on the initial and final state of the system.
- 5. **Energy:** Energy is exchanged between the system and the surroundings as heat if they are at different temperatures.

- 6. The properties of the system whose value is independent of the amount of substance are called intensive properties. e.g., temperature, pressure, viscosity, surface tension, dielectric constant, specific heat capacity.
- 7. The properties of the system whose value depends upon the amount of substance present in the system are called extensive properties. e.g., mass, volume, surface area, energy, enthalpy, entropy, free energy, heat capacity.
- 8. Work is also a mode of transference of energy between system and the surroundings. Work done by the system on the surroundings is given by $p\Delta V$.
- 9. **Internal energy (U):** The energy associated with the system at a particular conditions of temperature and pressure.
- 10. **Enthalpy (H):** It is sum of internal energy and pressure-volume energy of the system at a particular temperature and pressure. It is also called heat content (H = E + pV).
- 11. **Hess's law:** The enthalpy change in a particular reaction is the same whether the reaction takes place in one step or in a number of steps.
- 12. **Bond enthalpy:** The average amount of energy required to break one mole of the bonds of a particular type in gaseous molecules.
- 13. Entropy (S): It is a measure of randomness or disorder of the system. Thus, the order is Gas > Liquid > Solid.

	NCERT LINE BY	LIN	E QUESTIONS
(1.)	An adiabatic process occurs in		
(a.)	Open system	(b.)	Closed system
(c.)	Isolated system	(d.)	In all the given system
(2.)	When two moles of hydrogen expands isotherma 15 L to 50 L, the work done (in litre atm) will be	lly aga	inst a constant pressure of 1 atm, at 25°C from
(a.)	17.5	(b.)	35
(c.)	51.5	(d.)	70
(3.)	The enthalpy of combustion of H_2 , cyclohexane (-3920 kJ per mol respectively. Heat of hydrogen	(C ₆ H ₁₀) ation o) and cyclohexane (C_6H_{12}) are -241, -3800 and of cyclohexane is
(a.)	121 kJ/mol	(b.)	–121 kJ/mol
(c.)	+242 kJ/mol	(d.)	–242 kJ/mol
(4.)	To calculate the amount of work done in joules d the volume must be expressed in	uring r	eversible isothermal expansion of an ideal gas,
(a.)	m ³ only	(b.)	dm ³ only
(C.)	cm ³ only	(d.)	Any of these
(5.)	Which one of the following is not a state function	1?	
(a.)	Enthalpy	(b.)	Entropy
(c.)	Work	(d.)	Free energy
(6.)	When one mole of monoatomic ideal gas at $T \text{ K}$ we pressure of 1 atm changes volume from 1 L to 2 1	underg L. The	oes adiabatic change under a constant external final temperature in Kelvin would be
(a.)	$\frac{T}{2^{2/3}}$	(b.)	$T + \frac{2}{3 \times 0.0821}$
(c.)	Т	(d.)	$T - \frac{2}{3 \times 0.0821}$
(7.)	For a reaction at 25°C, enthalpy and entropy chan respectively. What is the Gibbs free energy?	iges are	$e - 11.7 \times 10^{3}$ J mol ⁻¹ and -105 J mol ⁻¹ K ⁻¹
(a.)	15.05 kJ	(b.)	19.59 kJ
(c.)	2.55 kJ	(d.)	22.55 kJ
(8.)	For the reaction of one mole of zinc dust with on <i>W</i> correspond to	e mole	of sulphuric acid in a bomb calorimeter, ΔU and
(a.)	$\Delta U < 0, W = 0$	(b.)	$\Delta U = 0, W < 0$
(c.)	$\Delta U > 0, W = 0$	(d.)	$\Delta U = 0, W > 0$

(9.)	A heat engine absorbs heat Q_1 at temperature T_1 is $(Q_1 + Q_2)$ this data	and hea	at Q_2 at temperature T_2 , work done by the engine
(a.)	Violates 1st law of thermodynamics	(b.)	Violates 1st law of thermodynamics if a_1 is -ve
(c.)	Violates 1st law of thermodynamics if a_2 is $-ve$	(d.)	Does not violates 1st law of thermodynamics
(10.)	In the combustion of 2.0 g of methane, 25 kcal h	eat is li	iberated. Heat of combustion of methane would
(a.)	150 kcal	(b.)	200 kcal
(c.)	250 kcal	(d.)	350 kcal
(11.)	The resultant heat change in a reaction is the san statement is called	ne whet	ther it takes place in one or several stages. This
(a.)	Lavoisier and Laplace law	(b.)	Hess's law
(c.)	Joule's law	(d.)	Le-Chatelier's principle
(12.)	For the isothermal expansion of an ideal gas		
(a.)	E and H increases	(b.)	E increases but H decreases
(c.)	H increases but E decreases	(d.)	E and H are unaltered
(13.)	A gas expands isothermally against a constant exvolume of 20 dm ³ . It absorbs 800 J of thermal e	ternal _] nergy f	pressure of 1 atm from a volume of 10 dm ³ to a from its surroundings. The ΔU is
(a.)	-312 J	(b.)	+123 J
(c.)	—213 J	(d.)	+231 J
(14.)	Mark the correct statement		
(a.)	For a chemical reaction to be feasible, ΔG should be zero	(b.)	Entropy is a measure of order in a system
(c.)	For a chemical reaction to be feasible, ΔG should be positive	(d.)	The total energy of an isolated system is constant
(15.)	The amount of heat measured for a reaction in a	bomb c	calorimeter is
(a.)	ΔG	(b.)	ΔH
(c.)	ΔE	(d.)	$p.\Delta V$
(16.)	Equal volumes of monoatomic and diatomic gas. The ratio of specific heats of the mixture (C_p/C_p)	es at sa) will b	me initial temperature and pressure are mixed. e
(a.)	1	(b.)	2
(c.)	1.67	(d.)	1.2

www.ununucuueniy.con

(17.)	ΔS^o will be highest for the reaction		
(a.)	$Ca(s) + \frac{1}{2}O_2(g) \to CaO(s)$	(b.)	$CaCO_3(g) \rightarrow CaO(s) + CO_2(g)$
(c.)	$C(g) + O_2(g) \rightarrow CO_2(g)$	(d.)	$N_2(g) + O_2(g) \rightarrow 2NO(g)$
(18.)	The quantity of heat measured for a reaction in a	bomb	calorimeter is equal to
(a.)	ΔG	(b.)	ΔH
(c.)	$p \Delta V$	(d.)	ΔE
(19.)	Two moles of helium gas expanded isothermally constant pressure of 100 k Pa. Calculate the work	and irr done.	eversible at 27°C from volume 1 dm ³ to 1 m ³ at
(a.)	99900 kJ	(b.)	99900 J
(C.)	34464.65 kJ	(d.)	34464.65 J
(20)	ΔF° of combustion of isobutylene is $-r k I mol^{-1}$	The va	$he of \Lambda H^{\circ}$ is
(<u>-</u> .)	$= \Delta E^{\circ}$	(b.)	$> \Delta E^{\circ}$
()		()	
(C.)	= 0	(d.)	$< \Delta E^{\circ}$
(21.)	Molar heat of vaporisation of a liquid is 6 kJmol ⁻	¹ . If the	e entropy change is $16 \text{ J} \text{ mol}^{-1} \text{K}^{-1}$, the boiling
(a.)	273 KALIANTA	(b.)	375°C
(c.)	37 <mark>5 K</mark>	(d.)	102°C
(22.)	The molar heat capacity of water at constant press to 100 g of water which is free to expand the incr	sure is ease in	75 JK ⁻¹ mol ⁻¹ . When 1.0 kJ of heat is supplied temperature of water is
(a.)	2.4 K	(b.)	3.6 K
(c.)	4.8 K	(d.)	1.2 K
(23.)	Which is correct for an endothermic reaction?		
(a.)	ΔH is positive	(b.)	ΔH is negative
(c.)	ΔE is negative	(d.)	$\Delta H = 0$
(24.)	Hess's law is based on		
(a.)	Law of conservation of mass	(b.)	Law of conservation of energy
(c.)	First law of thermodynamics	(d.)	None of the above

(25.) An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_i is the initial temperature and T_f is the final temperature, which of the following statements is correct?

(a.)
$$(T_f)_{irrev} > (T_f)_{rev}$$

(b.) $T_f > T_i$ for reversible process but $T_f = T_i$ for irreversible process (c.) $(T_r)_{rev} = (T_r)_{irrev}$
(c.) $(T_r)_{rev} = (T_r)_{irrev}$
(d.) $T_r = T_i$ for both reversible and irreversible processes
(26) The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K_c is
(a) $\Delta G = RT \ln K_c$
(b) $-\Delta G = RT \ln K_c$
(c) $\Delta G^o = RT \ln K_c$
(d) $-\Delta G^o = RT \ln K_c$
(e) $-\Delta G^o = RT \ln K_c$
(f) $-\Delta G^o = RT \ln K_c$
(c) $\Delta G^o = RT \ln K_c$
(d) $-\Delta G^o = RT \ln K_c$
(e) $0.064 \ker mass of glucose takes place according to the equation
 $G_0 \ln_2 O_0 = CO_0 + 610_0 M = -72 Kac.$ How much energy will be required for the production of 1.6 g
of glucose (Molecular mass of glucose = 180)?
(a) $0.064 \ker m$
(b) $0.64 \ker m$
(c) $6.4 \ker m$
(d) $64 \ker m$
(e) $16 \tan$ isocheric process $\Delta E = -Q$
(b) For an adiabatic process $\Delta E = -W$
(c) For an isocherinal process $Q = +W$
(c) $\Delta F = q$
(d) $q = 0$
(29) In an adiabatic process
(a) $p \Delta V = 0$
(b) $q = +W$
(c) $\Delta E = q$
(c) ΔH and ΔS increases and $\Delta S \Delta H$
(b) ΔH and ΔS decreases and $\Delta H > T\Delta S$
(c) ΔH increase and ΔS decreases
(d) ΔH decreases and ΔS increases
(31) Identify the intensive quantify from the following
(a) Enthalpy and temperature
(b) Volume and temperature
(c) Furthalpy and temperature
(d) Temperature and refractive index
(32) A hypothetical reaction $A \rightarrow 2B$, proceeds through following sequence of steps
(i) $A \rightarrow C_i \Delta H = q$
(ii) $C \rightarrow D_i \Delta H = v$
(iii) $C \rightarrow D_i \Delta H = v$
(iii) $C \rightarrow D_i \Delta H = v$
(b) $q + v - 2x$
(c) $q + v + 2x$
(c) $q + v + 2x$
(d) $q = 2v - 2x$$

(c.)	Energy of internal system	(d.)	None of the above
(40.)	What is ΔE for system that does 500 cal of work system?	on sur	rounding and 300 cal of heat is absorbed by the
(a.)	-200 cal	(b.)	-300 cal
(c.)	+200 cal	(d.)	+300 cal
(41.)	50 mL of water takes 5 min to evaporate from a v delivers 400 W. The enthalpy of vaporisation of v	vessel o water is	on a heater connected to an electric source which
(a.)	40.3 kJ per mol	(b.)	43.2 kJ per mol
(c.)	16.7 kJ per mol	(d.)	180.4 kJ per mol
(42.)	Which of the following taking place in the blast f	furnace	is endothermic?
(a)	$C_2(0) \rightarrow C_2(0 \pm 0)$	(h)	$2C \pm 0 \rightarrow 2CO$
(a.)	$CaCO_3 \rightarrow CaO + CO_2$	(D.)	$20 \pm 0_2 \rightarrow 200$
(c.)	$C + O_2 \rightarrow CO_2$	(d.)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
(43.)	An ideal gas expands in volume from 1×10^{-3} r pressure of 1×10^{5} Nm ⁻² . The work done is	n ³ to 1	$\times 10^{-2}$ m ³ at 300 K against a constant
(a.)	-900 J	(b.)	-900 kJ
(C.)	270 kJ	(d.)	900 kJ
(44.)	If a refrigerator's door is opened then, we get		
(a.)	Room heated	(b.)	Room cooled
(c.)	More amount of heat is passed out	(d.)	No effect on room
(45.)	Which of the following equations correctly repre	sents tl	ne standard heat of formation (ΔH_f^o) of methane?
(a.)	$C(diamond) + 2H_2(g) \rightarrow CH_4(g)$	(b.)	$C(\text{graphite}) + 2H_2(g) \rightarrow CH_4(l)$
(c.)	$C(graphite) + 2H(g) \rightarrow CH_4(g)$	(d.)	$C(\text{graphite}) + 4H \rightarrow CH_4(g)$
(46.)	The heat of neutralisation of a strong acid and a s	strong a	alkali is 57.0 kJ mol ^{-1} . The heat released when
	0.5 mole of HNO ₃ solution is mixed with 0.2 mol	e of K	OH is
(a.)	57.0 kJ	(b.)	11.4 kJ
(c.)	28.5 kJ	(d.)	34.9 kJ
(47.)	A system absorbs 10 kJ of heat and does 4 kJ of	work. 7	The internal energy of the system
(a)	Increases by 6 kI	(h)	Decreases by 6 kI
(a.)	потеазов бу б ка	(0.)	Decreases by 0 KJ
(c.)	Decreases by 14 kJ	(d.)	Increases by 14 kJ

	www.amamacadomy.com
(48.) A process is taking place at constant temperatur	re and pressure. Then
(a.) $\Delta H = \Delta E$	(b.) $\Delta H = T \Delta S$
	ζ, γ
(c.) $\Delta H = 0$	(d.) $\Delta S = 0$
()	()
(49.) Enthalpy change for a reaction does not depend	l upon
(a.) The physical states of reactants and products	(b.) Use of different reactants for the same products
(c.) The nature of intermediate reaction steps	(d.) The differences in initial and final temperature
	of involved substances
(50.) Which of the following conditions will always	lead to a non spontaneous change?
(a.) Positive ΔH and positive ΔS	(b.) Negative ΔH and negative ΔS
(c.) Positive ΔH and negative ΔS	(d.) Negative ΔS and positive ΔS
()	
TOPIC WISE PRAC	LICE QUESTIONS
TOPIC 1: First Law and Basic Fundamentals of Th	ermodynamics
1. Which has maximum internal energy at 290 K?	
(1) Neon gas (2) Nitrogen gas (3)	Ozone gas (4) Equal for all $(4 \circ 1)$ $(4 \circ 1$
2. One more of a non-ideal gas undergoes a change 250 K with a change in internal energy (AU) =	of state from (1.0 atm, 5.0 L, 200 K) to (4.0 atm, 5.0 L, 40 L - 40 L
atm :	to E aun. The change in chanapy of the process in E
(1) 43 (2) 57 (3)) 42 (4) None of these
3. Which of the following is closed system?	
(1) Jet engine (2) Tea pla	aced in a steel kettle
(3) Pressure cooker (4) Rocke	t engine during propulsion
4. The state of a thermodynamic system is described	a by its measurable or macroscopic (bulk) properties.
(1) Pressure and volume (2)	Pressure, volume, temperature and amount
(3) Volume, temperature and amount (4)) Pressure and temperature
5. Enthalpy change (ΔH) of a system depends upon	n its
(1) Initial state (2) Final state (3)) Both on initial and final state (4) None of these
6. One mole of an ideal gas at 300 K is expanded is	othermally from an initial volume of 1 L to 10 L. The
$\Delta E \text{ for this process is } (R = 2 \text{ cal. mol}^{-1} \text{ K}^{-1})$ (1) 162 7 col (2) zero (2)	(4) 0 1it atm
(1) 105./ cal (2) Zero $(3)7 When 1 mol of a gas is heated at constant volume$	1 1 201.1 Cal (4) 9 III. atm e temperature is raised from 298 to 308 K. If heat
supplied to the gas is 500 J. then which statement	t is correct?
(1) $q = w = 500$ J, $\Delta U = 0$ (2)	$q = \Delta U = 500 \text{ J}, w = 0$
(3) $q = -w = 500 \text{ J}, \Delta U = 0$ (4)	$\Delta U = 0, q = w = -500 \text{ J}$
8. In a closed insulated container, a liquid is stirred	with a paddle to increase the temperature, which of the
following is true?	
(1) $\Delta E = W \neq 0, q = 0$ (2) $\Delta E = W = q \neq 0$ (3)	$\Delta \mathbf{E} = 0, \mathbf{W} = q \neq 0 (4) \mathbf{W} = 0, \Delta \mathbf{E} = q \neq 0$
y. which of the following factors affect the internal (1) Heat passes into or out of the system (2)	energy of the system ? Work is done on or by the system
(1) mean passes into or out of the system. (2)	, work is done on or by the system.

	(3) Matter enters or leaves the system.	(4) All of the above
10.	Adiabatic expansions of an ideal gas is a	ccompanied by
	(1) decrease in ΔE	(2) increase in temperature
	(3) decrease in ΔS	(4) no change in any one of the above properties
11.	During isothermal expansion of an ideal	gas, its
	(1) internal energy increases	(2) enthalpy decreases
10	(3) enthalpy remains unaffected	(4) enthalpy reduces to zero.
12.	Which of the following are <i>not</i> state func	ctions ?
	(1) $q + W$ (11) q (111) W (1) (1) and (112) (111) and (113) and (114) (111) and (114) (114	(IV) (1) (II) and (III) (1) (II) and (III)
13	(1) (1) and (1) (2) (1) , (11) and (2) (1) , (11) and (2) (1)	(1V) (3) (1), (11) and (111) (4) (11) and (111)
15.	(1) $\Delta H = 0$ (2) $\Delta F = 0$	(3) $\Lambda G = 0$ (4) Total W = 0
14.	Work out the heat change (cal) when 40	of He gas at 27 °C undergoes isothermal and reversible
• ••	compression from initial pressure of 1 at	m to 10 atm ($R = 2$ cal K ⁻¹ mol ⁻¹).
	(1) 13.818 k cal (2) -13.818 k cal	(3) 55.272 k cal (4) -55.272 k cal
15.	If an ideal gas does the work of expansio	n solely at the cost of its internal energy, the process is
	(1) reversible (2) irrerversible	(3) isothermal (4) adiabatic
16.	In order to maintain constant temperature	e of a system involving an ideal gas, heat has to be removed.
	Then what is true?	
	(1) The gas is being compressed	(2) The gas is undergoing expansion
1.5	(3) The gas is performing the work	(4) There is neither expansion nor contraction of the gas
17.	The second seco	ased by 2K at constant pressure. Indicate the correct statement.
	(1) work done by the gas = $5 R$ (2) work done over the gas = $10R$	(2) work done by the gas = $10 R$
18	According to the first law of thermodyna	mics $A U = a + W$ In special cases the statement can be
10.	expressed in different ways. Which of the	e following is not a correct expression?
	(1) At constant temperature $q = -W$	(2) When no work is done $\Lambda U = q$
	(3) In gaseous system $\Delta U = q + P \Delta V$	(4) When work is done by the system : $\Delta U = q + W$
19.	The maximum work done when pressure	on 10 g of hydrogen is reduced from 20 to 1 atm at a constant
	temperature of 273 K will be	
	(1) 8170 cal (2) 8180 cal	(3) 8200 cal (4) 8350 cal
20.	Which of the following statements/relation	onships is not correct in thermodynamic changes?
	(1) $\Delta U = 0$ (isothermal reversible expan	sion of a gas)
	(2) w = $-nRT ln \frac{V_2}{V_2}$ (isothermal reversib	le expansion of an ideal gas)
	V ₁	
	(3) w = $-nRT ln \frac{V_2}{V_2}$ (isothermal reversib	le expansion of an ideal gas)
	V_1	re expandion of an racar gab)
	(4) For a system of constant volume heat	involved directly changes to internal energy.
21.	An ideal gas expands in volume from $1 \times$	10^{-3} to 1×10^{-2} m ³ at 300 K against a constant pressure of 1×10^{-3}
	Nm^{-2} . The work done is	(2) 000 L (4) 000 L L
	(1) 270 kJ (2) - 900 kJ	(3) - 900 J (4) 900 kJ
22	The difference between AH and AU is a	Laws of methochemisity
22.	(1) only solids (2) only liquids	(3) both solids and liquids (4) only gases
23.	The molar heat capacity of water at const	tant pressure is 75 JK ^{-1} mol ^{-1} . When 1kJ of heat is supplied to
	100 g of water, which is free to expand, t	he increase in temperature of water is
	(1) 6.6 K (2) 1.2 K	(3) 2.4 K (4) 4.8 K
24.	If a reaction involves only solids and liqu	nids which of the following is true ?
	(1) $\Delta H < \Delta E$ (2) $\Delta H = \Delta E$	(3) $\Delta H > \Delta E$ (4) $\Delta H = \Delta E + RT \Delta n$
25.	Consider the reaction : $N_2 + 3H_2 \rightarrow 2NH_2$	I_3 carried out at constant temperature and pressure. If ΔH and Δ
	U are the enthalpy and internal energy ch	anges for the reaction, which of the following expressions is true
	?	

www.alliantacademy.com

(2) $\Delta H < \Delta U$ (3) $\Delta H = \Delta U$ (1) $\Delta H > \Delta U$ (4) $\Delta H = 0$ 26. The $\Delta_{\rm f}$ H° of O₃, CO₂, NH₃ and HI are 142.2, -393.3, -46.2 and + 25.9 kJ per mol respectively. The order of their increasing stabilities will be (1) O₃, CO₂, NH₃, HI (2) CO₂, NH₃, HI, O₃ (3) O₃, HI, NH₃, CO₂ (4) NH₃, HI, CO₂, O₃ 27. The heat of combustion of carbon to CO_2 is – 393.5 kJ/mol. The heat released upon formation of 35.2 g of CO₂ from carbon and oxygen gas is (3) - 315 kJ(1) + 315 kJ(2) - 31.5 kJ(4) + 31.5 kJ28. Assume each reaction is carried out in an open container. For which reaction will $\Delta H = \Delta E$? (1) $C(s) + 2H_2O(g) \rightarrow 2H_2(g) + CO_2(g)$ (2) $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$ (3) 2CO (g) + O_2 (g) \rightarrow 2CO₂ (g) (4) H₂ (g) + Br₂ (g) \rightarrow 2 HBr (g) The enthalpies of formation of Al₂O₃ and Cr₂O₃ are -1596 kJ and -1134 kJ respectively. Δ H for the 29. reaction $2A1 + Cr_2O_3 \rightarrow 2Cr + Al_2O_3$ is (1) - 2730 kJ(2) -462 kJ (3) - 1365 kJ(4) + 2730 kJ30. Equal volumes of molar hydrochloric acid and sulphuric acid are neutralized by dil. NaOH solution and x kcal and y kcal of heat are liberated respectively. Which of the following is true? (2) $x = \frac{1}{2}y$ (4) None of these (3) x = 2y(1) x = vFor the reaction $A \rightarrow B$; $\Delta H = +24$ kJ/mol and $B \rightarrow C$; $\Delta H = -18$ kJ/mol, the decreasing order of 31. enthalpy of A, B and C follows the order (4) C, A, B(1) A, B, C(2) B, C, A(3) C, B, AEnergy required to dissociate 4 g of gaseous hydrogen into free gaseous atoms is 208 kcal at 25 °C. The 32. bond energy of H-H will be : (3) 10.4 kcal (4) 1040 kcal (1) 104 kcal (2) 52 kcal Calculate enthalpy change for the change $8S(g) \longrightarrow S_8(g)$, given that 33. $H_2S_2(g) \longrightarrow 2H(g) + 2S(g), \Delta H = 239.0 \text{ kcal mol}^{-1}$ $H_2S(g) \longrightarrow 2H(g) + S(g), \Delta H = 175.0 \text{ kcal mol}^{-1}$ (1) + 512.0 k cal (2) - 512.0 k cal (3) 508.0 k cal (4) - 508.0 k cal 34. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_i is the initial temperature and T_f is the final temperature, which of the following statements is correct? (2) $T_f = T_i$ for both reversible and irreversible processes (1) $(T_f)_{rev} = (T_f)_{irrev}$ $(3) (T_f)_{irrev} > (T_f)_{rev}$ (4) $T_f > T_i$ for reversible process but $T_f = T_i$ for irreversible process On the basis of thermochemical equations (I), (II) and (III) find out which of the algebraic relationships 35. given in options (i) to (iv) is correct. (I) C (graphite) + $O_2(g) \rightarrow CO_2(g); \Delta_r H = x kJ mol^{-1}$ (II) C(graphite) + $\frac{1}{2}$ O₂(g) \rightarrow CO(g); Δ_r H = y kJ mol⁻¹ (III) CO (g) $+\frac{1}{2}$ O₂(g) \rightarrow CO₂(g); $\Delta_r H = z kJ mol^{-1}$ (1) z = x + y(2) x = y - z(3) x = y + z(4) y = 2z - xConsider the following reaction occurring in an automobile 36. $2C_8H_{18}(g) + 25O_2(g) \longrightarrow 16CO_2(g) + 18H_2O(g)$ the sign of ΔH , ΔS and ΔG would be (2) -, +, -(3) -, +, + (4) + + -(1) +, -, +Enthalpy of $CH_4 + \frac{1}{2}O_2 \rightarrow CH_3OH$ is negative. If enthalpy of combustion of CH_4 and CH_3OH are x and y 37. respectively, then which relation is correct (1) x > y(3) x = y(2) x < y(4) $x \ge y$ If the bond energies of H-H, Br- Br, and H-Br are 433, 192 and 364 kJ mol⁻¹ respectively, the Δ H° for 38. the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ is (3) + 261 kJ(1) - 261 kJ(2) + 103 kJ(4) - 103 kJCalculate the standard enthalpy change (in kJ mol⁻¹) for the reaction $H_2(g) \rightarrow H_2O_2(g)$, given that 39. bond enthalpy of H–H, O=O, O–H and O–O (in kJ mol⁻¹) are respectively 438, 498, 464 and 138.

10	(1) - 130 $(2) - 65$	(3) + 130	(4) – 334
40.	Four grams of graphite is burnt in a bomb cal	from 300 to 304 K. W	city 30 kJ K^{-1} in excess of oxygen at 1 bat is the enthalpy of combustion of
	graphite (in kJ mol ^{-1})?	10111 500 to 504 K. W	hat is the entitalpy of combustion of
	(1) 360 (2) 1440	(3) – 360	(4) -1440
41.	The standard enthalpy of formation ($\Delta f H_{298}^{\circ}$)	for methane, CH4 is -	- 74.9 kJ mol ⁻¹ . In order to calculate the
	average energy given out in the formation of	a C – H bond from the	is it is necessary to know which one of
	the following?	1 1 11	
	(1) The dissociation energy of the hydrogen i	nolecule, H ₂ .	
	(2) The first four formation energy of H_2 and enthalp	by and sublimation of	carbon (graphite).
	(4) The first four ionisation energies of carbo	n and electron affinity	of hydrogen.
42.	At 25°C and 1 bar which one of the following	g has a <mark>non-</mark> zero of ΔI	$\mathbf{H}_{\mathbf{f}}^{\mathbf{o}}$?
	(1) Br ₂ (1) (2) C (graphite)	(3) I_2 (s)	$(4) O_3 (g)$
43.	If enthalpy of formation of $C_2H_4(g)$, $CO_2(g)$	and $H_2O(1)$ at 25°C ar	nd 1 atm pressure are $52, -394$ and
	-286 kJ/mol respectively, the change in enth (1) -1412 kJ/mol (2) -1412 kJ/mol	(3) + 14.2 kJ/mol	(4) + 1412 kJ/mol
44.	250 mL of 0.1 M HCl and 250 mL of 0.1 M I	KOH, both being at th	e same temperature, are mixed
	thoroughly and the temperature rise is found	to be ΔT_1 . If the expe	riment is repeated using 500 mL each
	of the two solutions and ΔT_2 is the temperature (1) ΔT_2 is the temperature (2) ΔT_2 is the temperature (3) $\Delta T_$	are rise, then which is	true?
45	(1) $\Delta I_2 > 2\Delta I_1$ (2) $\Delta I_1 = 2\Delta I_2$ From the following bond energies:	$(3) \Delta T_1 = \Delta T_2$	(4) none of these
ч.,	H – H bond energy: 431.37 kJ mol ⁻¹		
	C = C bond energy: 606.10 kJ mol ⁻¹		
	C - C bond energy: 336.49 kJ mol ⁻¹		
	C – H bond energy: 410.50 kJ mol ⁻¹		
	H H H H H		
	$ $ $ $ $ $ $ $ $ $ $C = C + H - H \longrightarrow H - C - C - H$		
	H H H H will be:		
16	(1) - 243.6 kJ mol ⁻¹ $(2) - 120.0$ kJ mol ⁻¹ The values of standard enthalpy of formation	(3) 553.0 kJ mol ⁻¹ of SE (g) S (g) and E (g)	(4) $1523.6 \text{ kJ mol}^{-1}$
40.	respectively. The average S–F bond energy in	SF_6 will be	g) are . – 1100, 275 and 80 kJ mor
	(1) 309 kJ (2) 315 kJ	(3) 320 kJ	(4) 300 kJ
47.	The following two reactions are known :		
	$Fe_2O_3(s) + 3CO(g) \longrightarrow 2Fe(s) + 3CO_2(g);$	$\Delta H = -26.8 \text{ kJ}$	
	The value of ΔH for the following reaction	-10.3 KJ	
	$Fe_2O_3(s) + CO(g) \longrightarrow 2FeO(s) + CO_2(g)$ is:		
	(1) + 6.2 kJ $(2) + 10.3 kJ$	(3) - 43.3 kJ	(4) –10.3 kJ
48.	The fat, $C_{57}H_{104}O_6(s)$, is metabolized via the	following reaction C ₅	$_{7}H_{104}O_6(s) + 80 O_2(g) \rightarrow 57CO_2(g) +$
	$52H_2O(1)$ the energy (kJ) liberated when 1.0 g	g of this fat reacts will	be Given the enthalpies of formation,
	$\Delta_{\rm f} {\bf f} {\bf f} (C_{57}{\bf f}_{104}{\bf 0}_{6,8}) = -70870 {\rm ~kJ/mor},$		
	$\Delta_{\rm f} {\rm H}^{0}$ (H ₂ O, 1) = -285.8 kJ/mol;		
	$\Delta_{\rm f} {\rm H}^{\circ} ({\rm CO}_2, {\rm g}) = -393.5 {\rm kJ/mol}$		(1) 20 2
49	(1) - 3/.98 $(2) - 40.4Hess's law is used to calculate :$	(3) - 33.4	(4) - 30.2
ч <i>у</i> .	(1) enthalpy of reaction. (2) en	tropy of reaction	
	(3) work done in reaction (4) Al	l of the above	
50.	An imaginary reaction $X \longrightarrow Y$ takes place	in three steps	

	$X \longrightarrow A, \Delta H = -q_1; B \longrightarrow A, \Delta H = -q_2$	$A_2; B \longrightarrow Y, \Delta H = -$	·q ₃
	If Hess' law applicable, then the heat of the	reaction $(X \rightarrow Y)$ is :	
	(1) $q_1 - q_2 + q_3$ (2) $q_2 - q_3 - q_1$	(3) $q_1 - q_2 - q_3$	(4) $q_3 - q_2 - q_1$
51.	What amount of energy (kJ) is released in the	he combustion of 5.8 g	g of C ₄ H ₁₀ (g)?
	$2C_4H_{10}(g) + 13O_2(g) \longrightarrow 8CO_2(g) + 10H_2(g)$	$O(l); \Delta H^{\circ} = -5756 \text{ kJ}$	
	(1) 575.6 (2) 287.8	(3) 182	(4) 57.56
52.	What is the internal energy (kJ) change occu	urs when 36 g of H ₂ O((1) converted to $H_2O(g)$?
	Δ H°(vapourisation) = 40.79kJ/mol		
	(1) 75.38 (2) 80.98	(3) 70.98	(4) 45.89
53.	If bond energies are denoted by E, the entha	alpy of the reaction:	
	$CH \equiv CH(g) + 2H_2(g) \longrightarrow C_2H_6(g)$, is		
	(1) $E_{C \equiv C} + 2E_{H-H} - E_{C-C} - 4E_{C-H}$	(2) $E_{C} \equiv C + 2E_{H-H}$ -	Ес-с -6Ес-н
	(3) $E_{C} \equiv c - 2E_{H-H} - E_{C-C} - 4E_{C-H}$	(4) $E_{C \equiv C} + 2E_{H-H}$ -	Ес=с - 4Ес-н
	<u>TOPIC 3: Entropy and</u>	<u>d Second Law of The</u>	<u>rmodynamics</u>
54.	Identify the correct statement regarding enti	ropy:	1
	(1) At absolute zero temperature, the entrop	y of perfectly crystalli	ne substances is positive.
	(2) At absolute zero temperature, entropy of	f perfectly crystalline s	substance is taken to be zero.
	(3) At 0°C the entropy of a perfectly crystal	line substance is taken	to be zero.
55	(4) At absolute zero temperature, the entrop	by of all crystalline sub	stances is taken to be zero.
22.	(1) $\mathbf{I}\mathbf{K}^{-1}$ mol ⁻¹ (2) \mathbf{I} mol ⁻¹	(3) $I^{-1} K^{-1} mol^{-1}$	(4) $\text{IK} \text{ mol}^{-1}$
56	Λ S° will be highest for the reaction		(4) JK mor
50.	1		
	(1) Ca (s) + $\frac{1}{2}O_2(g)$ \longrightarrow CaO (s)	(2) $CaCO_3(s)$ —	$\rightarrow CaO(s) + CO_2(g)$
	$(3) C(s) + O_2(s) \longrightarrow CO_2(g)$	(4) $N_2(g) + O_2(s)$	$\rightarrow 2NO(g)$
57.	In which of the following entropy decreases	s?	
	(1) Crystallization of sucrose from solution	(2) Rusting of iron	
	(3) Melting of ice	(4) Vaporization of	camphor
58.	Given the following entropy values (in J K-	$^{-1}$ mol $^{-1}$) at 298 K and 1	atm :H ₂ (g), $Cl_2(g)$ and HCl(g) are
	130.6, 223 and 186.7 respectively. The entro	opy change (in J K ⁻¹ m	Hol^{-1}) for the reaction $H_2(g) + Cl_2(g)$
	\longrightarrow 2HCl(g) is		
	(1) + 540.3 $(2) + 727.0$	(3) -166.9	(4) + 19.8
59.	Which one of the following demonstrates a	decrease in entropy?	
	(1) Dissolving a solid into solution	(2) An expanding u	niverse
(0)	(3) Burning a log in a fireplace	(4) Raking up leave	es into a trash bag
60.	Considering entropy (S) as a thermodynami	ic parameter, the criter (2)	ion for the spontaneity of any process is
	(1) $\Delta S_{system} + \Delta S_{surroundings} > 0$ (2) $\Delta S_{system} > 0$ and $N_{system} > 0$	(2) $\Delta S_{\text{system}} - \Delta S_{\text{sur}}$	roundings > 0
	(3) $\Delta S_{\text{system}} > 0$ only	(4) $\Delta S_{\text{surroundings}} > 0$	Jonly
	TOPIC 4: Spontanoity Cibb	's Free Freerow and F	quilibrium Constant
61	A reaction with $\Delta H = 0$ is found to be spot	stree Energy and E	
01.	(1) AS is negative (2) AS is nositive	(3) T Λ S is positive	(4) Both (2) and (3)
62	If for the reaction at 300 K \cdot 2Mg(g) + O ₂ (g	$(3) \uparrow \Delta S \downarrow S \rho S H = -$	1202 kL mol^{-1} and $\Lambda S = -217.0 \text{ IK}^{-1}$
02.	$\frac{1}{1-1} T = \frac{1}{1-1} T = $	(3) 72101gO(3), $\Delta_{\rm r}$ 11 –	$1202 \text{ K} \text{ mor}$ and $\Delta_r S = 217.0 \text{ JK}$
	mol ⁻¹ . The total entropy change (ΔS) _T and	gibbs energy change d	luring the course of reaction ($\Delta_r G$) are
	respectively :		
	(1) 3.79×10^{3} Jk ⁻¹ mol ⁻¹ , - 1136.9 Kj	(2) $3.79 \times 10^3 \text{Jk}^{-1}\text{m}$	$101^{-1}, +1000 \text{ J}$
	$(3) + 1000 \text{ Jk}^{-1}\text{mol}^{-1}, 3.79 \times 10^3 \text{ J}$	(4) – 1136.9 kJ, 3.7	$9 \times 10^3 \text{ J}$
63.	Which of the following pairs of processes is	s certain to occur in a s	spontaneous chemical reaction?
	(1) Exothermic and increasing disorder	(2) Exothermic and	decreasing disorder
	(3) Endothermic and increasing disorder	(4) Endothermic an	d decreasing disorder
64.	The enthalpy and entropy change for the real $P_{i}(t) + CI_{i}(t) + 2P_{i}(t)$	action	
	$Br_2(1) + Cl_2(g) \rightarrow 2 BrCl(g)$		

are 30kJ mol⁻¹ and 10⁵ JK⁻¹ mol⁻¹ respectively. The temperature at which the reaction will be in equilibrium is (1) 273 K (2) 450 K (3) 300 K (4) 285.7 K ΔG in Ag₂O \rightarrow 2Ag + 1/2O₂ at a certain temperature is -10 kJ mol⁻¹. Pick the correct statement. **65**. (1) Ag₂O decomposes to Ag and O_2 (2) Ag and O_2 combines to form Ag₂O (3) Reaction is in equilibrium (4) Reaction does not take place Identify the correct statement for change of Gibbs energy for a system (ΔG_{system}) at constant temperature **66.** and pressure (1) If $\Delta G_{\text{system}} = 0$, the system has attained equilibrium. (2) If $\Delta G_{\text{system}} = 0$, the system is still moving in a particular direction. (3) If $\Delta G_{\text{system}} < 0$, the process is not spontaneous. (4) If $\Delta G_{\text{system}} > 0$, the process is not spontaneous. 67. A spontaneous reaction is impossible if (1) both ΔH and ΔS are negative. (2) both Δ H and Δ S are positive. (3) Δ H is negative and Δ S is positive. (4) ΔH is positive and ΔS is negative. **68**. Pick out the wrong statement: (1) The standard free energy of formation of all elements is zero (2) A process accompanied by decrease in entropy is spontaneous under certain conditions (3) The entropy of a perfectly crystalline substance at absolute zero is zero (4) A process that leads to increase in free energy will be Spontaneous 69. The dissolution of KCl in water is endothermic yet it dissolves in water spontaneously. Which one of the following best explains this behaviour? (1) Endothermic processes are energetically favoured. (2) The electrostatic bonds between the ions are not too strong. (3) Energy changes have nothing to do with the dissolution processes. (4) The entropy driving force causes the dissolution. Which of the following thermodynamic condition at constant pressure and temperature is necessary for 70. the spontaneity of a process? (1) d(U - TS + PV) > 0(2) d(U - TS + PV) < 0(3) d(U - TS + PV) = 0(4) d(U + TS + PV) < 0**NEET PREVIOUS YEARS QUESTIONS** 1. The bond dissociation energies of X_2 , Y_2 and XY are in the ratio of 1 : 0.5 : 1. ΔH for the formation of XY is -200 kJ mol^{-1} . The bond dissociation energy of X₂ will be [2018] (1) 200 kJ mol⁻¹ (2) 100 kJ mol⁻¹ (3) 400 kJ mol⁻¹ (4) 800 kJ mol⁻¹ For a given reaction, $\Delta H = 35.5 \text{ kJ mol}^{-1}$ and $\Delta S = 83.6 \text{ JK}^{-1} \text{ mol}^{-1}$. The reaction is spontaneous at : 2. (Assume that ΔH and ΔS do not vary with temperature) [2017] (1) T > 425 K (2) All temperatures (3) T > 298 K(4) T < 425 K A gas is allowed to expand in a well-insulated container against a constant external pressure of 2.5atm 3. from an initial volume of 2.50 L to a final volume of 4.50 L. The change in internal energy ΔU of the gas in joules will be : [2017] (1) - 500J(2) - 505J(3) + 505J(4) 1136.25J 4. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is [2016] (1) $\Delta H < 0$ and $\Delta S = 0$ (2) $\Delta H > 0$ and $\Delta S < 0$ (4) $\Delta H < 0$ and $\Delta S < 0$ (3) $\Delta H < 0$ and $\Delta S > 0$ 5. The heat of combustion of carbon to CO₂ is -393.5 kJ/mol. The heat released upon formation of 35.2 g of CO₂ from carbon and oxygen gas is [2015] (1) - 315 kJ(2) + 315 kJ(3) - 630 kJ(4) - 3.15 kJ6. For the reaction : $X_2O_4(1) \rightarrow 2XO_2(g)$ $\Delta U = 2.1$ Kcal. $\Delta S = 20$ cal K⁻¹ at 300 K

	Hence ΔG is:-			[2014]
7	(1) 2.7 Kcal (2) $-$ 2.7 Kcal	$\begin{array}{c} \text{ll} \\ \text{(3) 9.3 Kcal} \\ \text{200 } K \text{ summarized from 0.1L to} \end{array}$	(4) - 9.3 Kcal	
7.	pressure of 2 bar. The work done by	500 K expands from 0.1L to the gas is:-	0 0.25L against a co	instant external
	[Given that 1L bar = 100 J]			[NEET-2019]
	(1) -30 J (2) 5kJ	(3) 25 J	(4) 30 J	
8.	In which case change in entropy is no	egative?		[NEET-2019]
	(1) Evaporation of water (3) Sublimation of solid to gas	(2) Expansion of a (4) $2H(g) \rightarrow H_2(g)$	a gas at constant ter	nperature
9.	An ideal gas expands isothermally fr	om 10^{-3} m ³ to 10^{-2} m ³ at 30	$ \stackrel{''}{0}$ K against a const	ant pressure of
	10^5 Nm ⁻² . The work done on the gas	is:-	[NEET	-2019(ODISSA)]
	(1) $+270$ kJ (2) .900 J	(3) +900 kJ	(4) -900 kJ	
10.	Reversible expansion of an ideal gas	under isothermal and adiaba	atic conditions are a	as shown in
	the figure.			
	$A(P_A, V_A, T_A)$			
	$ P \qquad B(P_{B}, V_{B}, T_{B})$			
	$AB \rightarrow$ Isothermal expansion			
	$AC \rightarrow Adiabatic expansion$			
	Which of the following options is no	t correct?	[NEE]	Г-2019(<mark>OD</mark> ISSA)]
	(1) $\Delta S_{\text{isothermal}} > \Delta S_{\text{adiabatic}}$ (2) T	$T_{A} = T_{B}$ (3) $W_{isothermal} > W_{ad}$	diabatic	$(4) T_{\rm C} > T_{\rm A}$
11.	If for a certain reaction $\Delta_r H$ is 30 kJ r	nol ⁻¹ at 450 K, the value of 4	$\Delta_{\rm r} S$ (in JK ⁻¹ mol ⁻¹) i	for which the same
	Reaction will be spontaneous at the s	ame temperature is	[NEET	-2020(COVID)]
10	(1) 70 (2) -33	(3) 33	(4) -70	0011 11
12.	At standard conditions, if the change H_{2} + Br_{2} > 2HBr()	in the enthalpy for the follo	owing reaction is -1	09 kJ mol^{-1} .
	Given that bond energy of H_2 and Br	2is 435 kJ mol ⁻¹ and 192 kJ 1	mol ⁻¹ , respectively,	what is the bond
	energy (in kJ mol ⁻¹) of HBr?		INEET	-2020(COVID)]
		(2) (10)	(4) 250	
13	(1) 368 $(2) / 36The correct option for free expansion$	(3) 318 of an ideal gas under adiab	(4) 259	INEET_20201
10.	1. $q > 0$, $\Delta T > 0$ and $w > 0$	2. $q=0, \Delta T=0$	and $w=0$	
	3. $q = 0, \Delta T < 0 \text{ and } w > 0$	4. $q < 0, \Delta T = 0$	and $w=0$	
14.	For the reaction $2Cl(g) \rightarrow Cl_2(g)$.	the correct option is :		[NEET-2020]
	1. $\Delta H < 0$ and $\Delta S < 0$	2. $\Delta H > 0$ and $\Delta H > 0$	$\Delta S > 0$	
	3. $\Delta H > 0$ and $\Delta S < 0$	4. $\Delta H < 0$ and Δ	$\Delta S > 0$	
15.	Which one among the following is the	e correct option for right re	lationship between	C_ and C_ for one
10.	mole of ideal gas?			INEET-2021
	1. $C_{p} - C_{v} = R$ 2. $C_{p} = RC_{v}$ 3. C_{v}	$= RC_{p}$ 4. $C_{p} + C_{v} = R$		
16.	For irreversible expansion of an idea	l gas under isothermal condi	ition, the correct op	tion is: [NEET-2021]
	1) $\Delta U \neq 0, \Delta S_{total} \neq 0$	2) $\Delta U = 0, \Delta S_{total} \neq 0$, 1	t j
	3) $\Delta U \neq 0, \Delta S_{total} = 0$	4) $\Delta U = 0, \Delta S_{total} = 0$		
17.	Which of the following $p - V$ curve	represents maximum work of	done?	[NEET-2022]
		-		

NCERT LINE BY LINE QUESTIONS – ANSWERS									
(1.)	c	(2.)	b	(3.)	b	(4.)	d	(5.)	с
(6.)	a	(7.)	b	(8.)	a	(9.)	d	(10.)	b
(11.)	b	(12.)	d	(13.)	c	(14.)	d	(15.)	c
(16.)	d	(17.)	b	(18.)	d	(19.)	b	(20.)	d
(21.)	c	(22.)	a	(23.)	a	(24.)	b	(25.)	a
(26.)	d	(27.)	b	(28.)	d	(29.)	d	(30.)	c
(31.)	d	(32.)	c	(33.)	a	(34.)	a	(35.)	b
(36.)	d	(37.)	c	(38.)	c	(39.)	b	(40.)	a
(41.)	b	(42.)	a	(43.)	a	(44.)	a	(45.)	c
(46.)	b	(47.)	a	(48.)	a	(49.)	c	(50.)	c
	Т			ACTICE	OUESTI		A NICIA/ED	20	

TOPIC WISE PRACTICE QUESTIONS - ANSWERS

1)	3	2)	2	3)	3	4)	2	5)	3	6)	2	7)	2	8)	1	9)	4	10)	1
11)	3	12)	4	13)	4	14)	2	15)	4	16)	1	17)	3	18)	4	19)	2	20)	3
21)	3	22)	4	23)	3	24)	2	25)	2	26)	3	27)	3	28)	4	29)	2	30)	2
31)	2	32)	1	33)	2	34)	3	35)	3	36)	2	37)	2	38)	4	39)	1	40)	3
41)	1	42)	4	43)	2	44)	3	45)	2	46)	1	47)	1	48)	1	49)	2	50)	2
51)	2	52)	1	53)	1	54)	2	55)	1	56)	2	57)	1	58)	4	59)	4	60)	4
61)	1	62)	2	63)	1	64)	4	65)	1	66)	1	67)	4	68)	4	69)	4	70)	2

NEET PREVIOUS YEARS QUESTIONS-ANSWERS

1)	4	2)	1	3)	2	4)	3	5)	1	6)	2	7)	1	8)	4	9)	2
10)	4	11)	1	12)	1	13)	2	14)		15)	1	16)	2	17)	2	/	
													7				

NCERT LINE BY LINE QUESTIONS – SOLUTIONS

(1.) (c)

In an adjabatic process, no exchange of heat takes place between the system and surroundings, *i.e.*, dQ = 0. Such a condition exists when the system is thermally isolated.

(2.) (b)

:.

p=1 atm

$$\Delta V = (50 - 15) = 35 L$$

$$W = -p.\,\Delta V = -1 \times 35$$

= -35 Latm

Hence, work done by the system on the surroundings is equal to 35 L-atm.

(3.) (b)

Given: (i) $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$; $\Delta H = -241 \text{ kJ}$ (ii) $C_6H_{10} + \frac{17}{2}O_2 \rightarrow 6CO_2 + 5H_2O$; $\Delta H = -3800 \text{ kJ}$ (iii) $C_6H_{12} + 9O_2 \rightarrow 6CO_2 + 6H_2O$; $\Delta H = -3920 \text{ kJ}$ for the reaction $C_6H_{10} + H_2 \rightarrow C_6H_{12}$ [It is infact Eq.(i)+Eq.(ii)-Eq.(iii)] Thus, $\Delta H = -241 - 3800 - (-3920) = -121 \text{ kJ}$ (4.) (d)

As we know that,

Work done(W) = 2.303 nRT log $\frac{V_2}{V_1}$.

Hence, V_1 and V_2 are in ratio in the relation. So, unit may be expressed in any one of m^3 , dm^3 or cm^3 .

(5.) (c)

Macroscopic properties which determine the state of a system are referred as state functions. The change in the state properties depends only upon the initial and final state of the system. All thermodynamic functions are state functions except work and heat.

(6.) (a)

$$TV^{\gamma-1} = \text{constant}$$

$$\frac{T}{T_{\text{final}}} = \left(\frac{V_2}{V_1}\right)^{\gamma-1}$$

$$\frac{T}{T_{\text{final}}} = \left(\frac{2}{1}\right)^{(5/3-1)} = 2^{(2/3)}$$

$$\frac{T}{T_{\text{final}}} = \frac{T}{2^{(2/3)}}$$

(7.) (b)

 $\Delta G = \Delta H - T\Delta S, T = 25 + 273 = 298 \text{ K}$ = -11.7 × 10³ - 298 × (-105) = 19590 J = 19.59 kJ

(8.) (a)

Bomb calorimeter is commonly used to find the heat of combustion of organic substance which consists of a sealed combustion chamber called a bomb, if a process is run in a sealed container then no expansion or compression is allowed, so W = 0 and $\Delta U = q$. Thus it has $\Delta U < 0, W = 0$

(9.) (d)

It does not violate the first law of thermodynamics but violates the II law of thermodynamics

(10.) (b)

 $\mathrm{CH}_4 + 2\mathrm{O}_2 \to \mathrm{CO}_2 + 2\mathrm{H}_2\mathrm{O}$

Molecular weight of $CH_4 = 12 + 4 = 16$

 \therefore On the combustion of 2.0 g of methane = 25.0 kcal

: On the combustion of 16.0 g methane $=\frac{25\times16}{2}=200$ kcal

(12.) (d)

In isothermal reversible process, ideal gas has constant volume and so, $\Delta E = 0$ and $\Delta H = \Delta E = 0$

(13.) (c)

$$W = \int_{1/1}^{1/2} p dV = -p(V_2 - V_1)$$

$$W = -1(20 - 10) = -10 \text{ dm}^3 \text{ atm}$$

$$= -10 \text{ dm}^3 \times \frac{8.314 \text{ JK}^{-1} \text{mol}^{-1}}{0.0821 \text{ dm}^3 \text{K}^{-1} \text{mol}^{-1}} = -1013 \text{ J}$$

From, 1st law of thermodynamics

$$\Delta U = q + W$$

$$= 800 \text{ J} + (-1013 \text{ J}) = -213 \text{ J}$$

(15.) (c)

Bomb calorimeter measures q_v which is equal to ΔE .

(16.) (d)

For monoatomic gas, $\gamma_2 = \frac{c_p}{c_v} = 1.67$ For diatomic gas, $\gamma_2 = \frac{c_p}{c_v} = 1.40$ $\therefore \gamma_1: \gamma_2 = \frac{1.67}{1.40} = 1.19:1$ (17.) (b)

Eq.(b) shows largest phase change *ie*, gas \rightarrow solid (18.) (d) Heat of combustion is usually measured by placing a known mass of a compound in a steel container called a constant volume bomb calorimeter. $\Delta E = C \times \Delta t \times \frac{M}{m}$ Where, C=heat capacity of calorimeter, $\Delta t = (t_2 - t_1) m$ =mass of substance taken and M=molar mass of substance (19.) (b) $W = -p\Delta V$ Given, p + 100kPa = 10^5 Pa, $V_1 = 1 \text{dm}^3 = 10^{-3} \text{m}^3, V_2 = 1 \text{m}^3$ $W = 10^5 \times (1 - 10^{-3})$ J W = 99900 J ... (20.) (d) $(CH_3)_2C = CH_2(g) + 6O_2(g) \rightarrow 4CO_2(g) + 4H_2O(l)$ $\Delta ng = 4 - 7 = -3(ie, \text{ negative})$ We know that $\Delta H = \Delta E + \Delta n_{g}RT$ $= \Delta E - (\Delta m) RT$ (:: $\Delta n_g = -ve$) $\therefore \Delta H < \Delta E$ (21.) (c) $\Delta S = 16 \text{ J mol}^{-1} \text{K}^{-1}$ $T_{\rm b.p} = \frac{\Delta H_{\rm vapour}}{\Delta S_{\rm vapour}} = \frac{6 \times 1000}{16}$ = 375 K(22.) (a) Heat capacity of water per gram = $\frac{75}{18}$ = 4.17 J $Q = mst = 100 \times 4.17 \times t = 1000$ $t = \frac{1000}{100 \times 4.17} = 2.4 \text{ K}$ (23.) (a) For an endothermic reactions ΔH is positive because in endothermic reaction heat is always absorbed. (24.) (b) Hess's law is based upon law of conservation of energy *i.e.*, first law of thermodynamics. (25.) (a) $T_{f_{irreversible}} > T_{f_{reversible}}$ it is an adiabatic expansion and W(rev) is maximum. (27.) (b) $\Delta H \text{ per 1.6 g} = \frac{72 \times 1.6}{180} = 0.64 \text{ kcal}$ (28.) (d) (a) For isochoric process, $\Delta V = 0$ $W = p\Delta V = 0$ $\Delta E = Q$:. (b) For adiabatic process, Q = 0 $\Delta E = W$ (c) For isothermal process, $\Delta T = 0$ and $\Delta E = 0$ Q = -W(d) For cyclic process, state functions like $\Delta E = 0$ Q = -W

(29.) (d) In the adiabatic process no heat enters or leaves the system *i.e.*, q = 0. (30.) (c) If $\Delta H = +$ ve and $\Delta S = -$ ve then the reaction is spontaneous (32.) (c) According to Hess's law, the total heat changes occurring during a chemical reaction are independent of path. ΔH A $\Delta H = q + V + 2x$ (33.) (a) For exothermic reactions, K_{eq} varies inversely with T while in case of endothermic reactions, K_{eq} varies directly with T (34.) (a) For isochoric process, $\Delta V = 0$ so, $q_v = \Delta E$ ie, heat given to a system under constant volume is used up in increasing ΔE (37.) (c) We know that internal energy of a gas depends upon its pressure and temperature. Thus, if a gas expands at constant temperature and pressure, than its internal energy remains same (38.) (c) For exothermic reaction, $\Delta H = (-)$ for endothermic reaction, $\Delta H = (+)$. (39.) (b) Every system having some quantity of matter, is associated with a definite amount of energy. This energy is known as internal energy. It is sum of many type of energies, such as translation energy, rotational energy, vibrational energy, electronic energy and bonding energy of the molecule. $E = E_{\text{trans}} + E_{\text{rot}} + E_{\text{vib}} + E_{\text{bonding}} + E_{\text{electronic}}$ (40.) (a) From first law of thermodynamic. $\Delta E = q + W$ Given, q = +300 cal (:Heat is absorbed) W = -500 cal ("Work is done on surroundings) $\Delta E = q + W = 300 + (-500)$:. = -200 cal (41.) (b) Work done in 1 s = 400 JHence, work in 5 min (300 s) $= 400 \times 300 = 120 \text{ kJ}$ $\Delta H_{\rm vap.}^{\rm o} = \frac{120 \text{ kJ}}{50/18} = 43.2 \text{ kJ/mol}$ (42.) (a) Bond breaking process or decomposition processes are endothermic process. (43.) (a) Work done due to change in volume against constant pressure, $W = -p(V_2 - V_1)$ $= -1 \times 10^5 \text{ Nm}^{-2} (1 \times 10^{-2} - 1 \times 10^{-3}) \text{m}^3$ = -900 Nm = -900 J (1 Nm=1 J) (44.) (a)

The compressor has to run for longer time releasing more heat to the surroundings (45.) (c) Standard heat of formation of methane is represented by C(graphite)+2H(g) = $CH_4(g)$ because the elements taken are in their standard state (46.) (b) 0.2 mole will neutralize 0.2 mole of HNO₃ heat evolved = $51 \times 0.2 = 11.4$ kJ (47.) (a) q = +10 kJ, W = -4 kJ $\therefore \Delta E = q + W$ = 10 - 4 = 6 kJSo, energy increases by 6 kJ (48.) (a) For an isothermal process, $\Delta E = 0$ As the process is taking place at constant T and p hence, from equation, $\Delta H = \Delta E + \Delta p. V$ We have, $\Delta H = 0 + 0 \times V = 0$ Hence, for the process, $\Delta H = \Delta E = 0$ **TOPIC WISE PRACTICE QUESTIONS - SOLUTIONS** 1. (3) Ozone gas have maximum internal energy. For non-linear molecule, $E = \frac{3RT}{2} + \frac{2RT}{2} + (3N-6)RT$ For linear molecule, $E = \frac{3RT}{2} + \frac{2RT}{2} + (3N-5)RT$ 2. (2) When both P and V are changing $\Delta H = \Delta U + \Delta (PV)$ $=\Delta U + (P_2V_2 - P_1V_1)$ $\Delta H = 40 + (20 - 3)$ = 57 L atm (3) Closed system can exchange energy and not matter with surroundings. Pressure cooker provides 3. closed system. (2) We can describe the state of a gas by quoting its pressure (P), volume (V), temperature (T), amount 4. (n) etc. 5. (3) (2) For an isothermal process $\Delta E = 0$ 6. 7. (2) As volume is constant hence work done in this process is zero therefore heat supplied is equal to change in internal energy. 8. (1) Internal energy is dependent upon temperature and according to first law of thermodynamics total energy of an isolated system remains same, i.e., in a system of constant mass, energy can neither be created nor destroyed by any physical or chemical change but can be transformed from one form to another $\Delta E = q + W$ For closed insulated container, q = 0, so, $\Delta E = +W$, as work is done by the system. 9. (4) 10. (1) $\Delta E = \Delta Q - W$ For adiabatic expansion, $\Delta Q = 0$ $\Rightarrow \Delta E = -W$ The negative sign shows decrease in Internal energy, which is equal to the work done on the system by the surroundings. 11. (3) During isothermal expansion of ideal gas,

 $\Delta T = 0$. Now H = E + PV $\therefore \Delta H = \Delta E + \Delta (PV); \quad \therefore \Delta H = \Delta E + \Delta (nRT);$ Thus if $\Delta T = 0$., $\Delta H = \Delta E$ i.e., enthalpy remains unaffected 12. (4) We know that heat (q) and work (w) are not state functions but (q + w) is a state function. H – TS (i.e. G) is also a state function. (4) For a cyclic process 13. $\Delta E = 0$, $\Delta H = 0$ and $\Delta G = 0$. As all depend upon final state and initial state, 'W' doesn't depend on path followed. (2) $q = -w_{rev} = -\left(-2.303nRT\log\frac{P_1}{P_2}\right) = 2.303 \times \frac{40}{4} \times 2 \times 300\log\frac{1}{10} = -13.82 \text{ kcal}$ 14. 15. (4) (1) Heat is generated on compression of a gas. 16. 17. (3) For 5 moles of gas at T, $PV_1 = 5 RT$ For 5 moles of gas at T-2, $PV_2 = 5R(T-2)$ Hence, $PV_2 - PV_1 = P(V_2 - V_1) = PDV$ = 5R[T-2-T] = -10Ror, $-P\Delta V = 10R (\Delta V \text{ is negative}, W \text{ is positive})$ (4) When work is done by the system, $\Delta U = q - W$ 18. (2) W = 2.303 nRT log $\frac{P_1}{P_2}$ 19. $=2.303 \times \frac{10}{2} \times 2 \times 273 \log \frac{20}{1} = 8180$ calories 20. (3) For isothermal reversible expansion. w = $-nRT ln \frac{V_2}{V}$ (3) W = -P Δ V = -10⁵ (1×10⁻² - 1×10⁻³) = -900J 21. 22. (4) The difference between ΔH and ΔU is not usually significant for systems consisting of only solids or liquids. Solids and liquids do not suffer any significant volume changes upon heating. The difference, however, becomes significant when gases are involved. (3) Given $C_p = 75 \text{ JK}^{-1} \text{ mol}^{-1}$. 23. $n = \frac{100}{18}$ moles, Q = 1000 J, $\Delta T = ?$ $Q = nC_p \Delta T \Rightarrow \Delta T = \frac{1000 \times 18}{100 \times 75} = 2.4 K$ 24. (2) $\Delta H = \Delta E + P \Delta V$, for solid and liquid, $\Delta V = \text{ or } \Delta H = \Delta E + \Delta n RT$, for solids and liquids $\Delta n = 0$. 25. (2) For $N_2 + 3H_2 \longrightarrow 2NH_3$; $\Delta n_g = 2 - 4 = -2$ $\Delta H = \Delta U + \Delta nRT$ Now, $\Delta H = \Delta U - 2RT$ or $\Delta U = \Delta H + 2RT$; $\therefore \Delta U > \Delta H$ (3) Energy absorbed $\propto \frac{1}{\text{stability of compound}}$ 26. Energy released µ stability of compound Thus, the order of stability is 142.2 > 25.9 > -46.2 > -393.2i.e. $O_3 > HI > NH_3 > CO_2$ (3) $C + O_2 \longrightarrow CO_2$, $\Delta H = -393.5 \text{ kJ/mol}$ 27. It means heat of formation of 1 mole (44 g) of CO₂ = -393.5 kJ/mol : Heat of formation of 1 g of $CO_2 = = \frac{-393.5}{44}$ kJ / mol

www.alliantacademy.com

Heat of formation of 35.2 g of CO₂ = $\frac{-393.5}{44} \times 35.2 = -314.8 \text{ kJ}$; -315 kJ 28. (4) We know that $\Delta H = \Delta E + P \Delta V$ In the reactions, $H_2 + Br_2 \rightarrow 2HBr$ there is no change in volume or $\Delta V = 0$ So, $\Delta H = \Delta E$ for this reaction (2) $2Al + \frac{3}{2}O_2 \rightarrow Al_2O_3, \Delta H = -1596kJ$ -----(i) 29. $2Cr + \frac{3}{2}O_2 \rightarrow Cr_2O_3, \Delta H = -1134kJ$ ------(ii) $2A1 + Cr_2O_3 \rightarrow 2Cr + Al_2O_3, \Delta H = -462 \text{ kJ}.$ By (i) - (ii); (2) 1 M $H_2SO_4 = 2g eq. of H_2SO_4$. 30. Hence y = 2x or $x = \frac{1}{2}y$ 31. (2) A \longrightarrow B, $\Delta H = +24$ kJ / mol \Rightarrow H_B – H_A = + 24 ...(i) B \longrightarrow C, $\Delta H = -18$ kJ/mol \Rightarrow H_C – H_B = – 18 ...(ii) From Eqs. (i) and (ii), we have $H_C - H_A = 6$ $\therefore H_B > H_C > H_A$ 32. (1) No. of moles of hydrogen $\frac{\text{Mass}}{\text{Molecular mass}} = \frac{4}{2} = 2 \text{ moles}$ Given $2H_2(g) \rightarrow 4H(g), \Delta H = 208$ kcal $\therefore H_2(g) \rightarrow 2H(g)\Delta H = 104 \, \text{kcal}$ 1 mol : Bond energy of H–H bond is 104 kcal 33. (2) $\Delta H_{\text{S-S}} + 2 \Delta H_{\text{H-S}} = 239 \ 2 \Delta H_{\text{H-S}} = 175$ Hence, $\Delta H_{s-s} = 239 - 175 \ 64 \ \text{kcal mol}^{-1}$ Then, ΔH for $8S(g) \rightarrow S_8(g)$ is $8 \times (-64) = -512$ kcal 34. (3) In a reversible process the work done is greater than in irreversible process. Hence the heat absorbed in reversible process would be greater than in the latter case. So, $T_{f}(rev) < T_{f}(irrev)$ 35. (3) 36. (2) This is combustion reaction, which is always exothermic hence $\Delta H = -ve$ As the no. of gaseous molecules are increasing hence entropy increases now $\Delta G = \Delta H - T \Delta S$ For a spontaneous reaction $\Delta G = -ve$ Which is possible in this case as $\Delta H = -ve$ and $\Delta S = +ve$. (2) CH₄(g) + $\frac{1}{2}$ O₂(g) \rightarrow CH₃OH(1); Δ H = ? 37. $\therefore \Delta H = [(\Delta H \text{ of combustion of } CH_3OH) - (\Delta H \text{ of combustion of } CH_4)]$ = [(-y) - (-x)] = [-y + x] = x - yGiven, $\Delta H = -ve$ $\therefore x - y < 0$ hence x < y38. (4) $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$

 $\Delta H^{\circ} = (BE)_{reactant} - (BE)_{product}$ $= (433 + 192) - (2 \times 364)$ = 625 - 728 = -103 kJ39. (1) $H_2(g) \rightarrow H_2O_2(g) \rightarrow H_2O_2(g)$ $\Delta H_{\text{reaction}} = B.E._{\text{Reactants}} - B.E._{\text{Products}}$ = [B.E.(H - H) + B.E.(O = O)] - [2B.E.(O - H) + B.E.(O - O)] $= [438 + 498] - [2 \times 464 + 138] = 936 - 1066 = -130 \text{ kJ mol}^{-1}$ (3) $\Delta E = C \times \Delta t \times \frac{M}{m} = 30 \times 4 \times \frac{12}{4} = 360$ 40. $\Delta E = -360 \text{ kJ mol}^{-1}$ 41. (1) To calculate average enthalpy of C - H bond in methane following information's are needed (i) dissociation energy of H_2 i.e. $\frac{1}{2}H_2(g) \longrightarrow H(g); \Delta H = x \text{ (suppose)}$ (ii) Sublimation energy of C(graphite) to C(g) $C(\text{graphite}) \longrightarrow C(g); \Delta H = y (\text{suppose})$ Given $C(\text{graphite}) + 2H_2(g) \longrightarrow CH_4(g); \Delta H = 75 \text{ kJ mol}^{-1}$ 42. (4) Ozone (O₃), the allotropic form of oxygen is of higher energy (by 68 kcal mol⁻¹) than O₂. Hence, O₃ can **not** be taken as the reference or standard state. 43. (2) Enthalpy of formation of C_2H_4 , CO_2 and H_2O are 52, -394 and -286 kJ/ mol respectively. (Given) The reaction is $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O_2$ change in enthalpy, $(\Delta \mathbf{H}) = \Delta \mathbf{H}_{\text{products}} - \Delta \mathbf{H}_{\text{reactants}}$ $= 2 \times (-394) + 2 \times (-286) - (52 + 0)$ = -1412 kJ/ mol.44. (3) In the second experiment, the heat produced is twice that in first case but at the same time thermal capacity of the resulting solution (twice as that in first case) is doubled. Hence, temperature rise will be the same. 45. (2) Enthalpy of reaction $= B.E_{(Reactant)} - B.E_{(Product)}$ $= \left[B.E_{(C=C)} + 4B.E_{(C-H)} + B.E_{(H-H)} \right] - \left[B.E_{(C-C)} + 6B.E_{(C-H)} \right]$ $= [606.1 + (4 \times 410.5) + 431.37)] - [336.49 + (6 \times 410.5)]$ $= -120.0 \text{ kJ mol}^{-1}$ 46. (1) Given $S(s) + 3F_2(g) \rightarrow SF_6(g)$; $\Delta H = -1100 \text{ kJ} \dots (i)$ $S(s) \rightarrow S(g); \Delta H = 275 \text{ kJ } \dots (ii)$ $1/2 F_2(g) F(g); \Delta H = 80 \text{ kJ} \dots$ (iii) To get $SF_6(g) \rightarrow S(g) + 6F(g)$ we can proceed as $(ii) + 6 \times (iii) - (i)$ \therefore SF₆(g) \rightarrow S(g) + 6F(g); Δ H= 1855 kJ Thus average bond energy for S-F bond = $\frac{1855}{6}$ = 309.16 kJ 47. (1) $Fe_2O_3(s) + CO(g) \longrightarrow 2FeO(s) + CO_2(g)$ $\Delta H = -26.8 + 33.0 = +6.2 \text{ kJ}$ 48. (1) (1) Hess's law is used for calculating enthalpy of reaction. 49. 50. (2) $X \rightarrow A + q_1$ $q_2 + A \rightarrow B$ $B \rightarrow Y + q_3$ $q_2 + X \rightarrow Y + q_1 + q_3$, $\Delta H = q_2 - q_1 - q_3$

51. (2) $Q = \frac{5.8}{58} \times \frac{5756}{2} = 287.8 \text{ kJ}$ 52. (1) $H_2O(l) \rightarrow H_2O(g)$ $\Delta H_{vap} = 40.79 \text{ kJ/mol}$ $\Delta H = \Delta U + \Delta ngRT$ \Rightarrow 40.79 kJ/mol = ΔU + (1) (8.314 JK⁻¹ mol⁻¹) (373 K) $\Rightarrow \Delta U^{\circ} = = \left(40.79 \,\text{kJ} \,/\,\text{mol} - \frac{8.314 \times 373}{1000} \,\text{kJ} \,/\,\text{mol} \right) = \left(40.79 - 3.10 \right) \,\text{kJ} \,/\,\text{mol} = 37.69 \,\frac{\text{kJ}}{\text{mol}}$ Internal energy change for 36 g of water = $37.69 \frac{\text{kJ}}{\text{mol}} \times \frac{36\text{g}}{18\text{g}/\text{mol}}$ $\Delta U = 75.98 \text{ kJ}$ 53. (1) 54. (2) According to 3rd law of thermodynamics at absolute zero temperature entropy of perfectly crystalline substance is taken to be zero. (1) $\Delta S = \frac{q}{T}$ 55. $q \longrightarrow required heat per mole$ $T \longrightarrow constant absolute temperature$ Unit of entropy is JK⁻¹ mol⁻¹ 56. (2) Eq. (2) shows largest phase change i.e., solid \rightarrow gas (1) Because randomness is decreased. 57. 58. (4) 59. (4) Raking up leaves into a thrash bag results in decrease in randomness i.e. decrease in entropy. (1) For a spontaneous process, ΔS_{total} is always positive. **60**. 61. (2) $\Delta G = \Delta H - T \Delta S$ $\Delta G = -T\Delta S$ (when $\Delta H = 0$ and $\Delta S = +ve$) $\Delta G = -ve$ 62. (1) $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$ $= -1202 - (-217 \times 10^{-3} \times 300) = -1136.9 \text{ kJ}$ Heat released will be absorbed by the surroundings to increase the entropy of surroundings. $\Delta S_{surr.} = + \frac{1202 \times 10^3}{300} = +4.01 \times 10^3 \, J K^{-1} mol^{-1}$ $\Delta S_{total} = -217 + 4.01 \times 10^3 = +3793 \ JK^{-1}mol^{-1}$ 63. (1) **64**. (4) We know that, $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$ When the reaction is in equilibrium, $\Delta G = 0$ $0 = \Delta H - T\Delta S \Longrightarrow T = \frac{\Delta H}{\Lambda S}$ $T = \frac{30 \times 1000}{105} = 285.7 K$ 65. (1) $\Delta G = -ve$ means the reaction is spontaneous. 66. (1) If $\Delta G_{\text{system}} = 0$ the system has attained equilibrium is right. In it alternative (4) is most confusing as when $\Delta G > 0$, the process may be spontaneous when it is coupled with a reaction which has $\Delta G < 0$ and total ΔG is negative, so right answer is (1). (4) $\Delta G = \Delta H - T \Delta S$; ΔG is positive for a reaction to be non-spontaneous when ΔH is positive and ΔS **67.** is negative. 68. (4) A process is spontaneous only when there is decrease in the value of free energy, i.e., ΔG is -ve. 69. (4) 70. (2)

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS (4) Let B.E of x_2 , y_2 and xy are x kJ mol⁻¹, 1. 0.5 x kJ mol⁻¹ and x kJ mol⁻¹ respectively $\frac{1}{2}\mathbf{x}_2 + \frac{1}{2}\mathbf{y}_2 \rightarrow \mathbf{xy}; \ \Delta \mathbf{H} - 200 \ \mathrm{kJ} \ \mathrm{mol}^{-1}$ $\Delta H = -200 = S (B.E)_{Reactants} - S(B.E)_{Product}$ $= \left[\frac{1}{2} \times (\mathbf{x}) + \frac{1}{2} \times (0.5\mathbf{x})\right] = \left[1 - (\mathbf{x})\right]$ On solving, $x = 800 \text{ kJ mol}^{-1}$ 2. (1) Given Δ H 35.5 kJ mol⁻¹ $\Delta S = 83.6 \text{ JK}^{-1} \text{ mol}^{-1}$; $\therefore \Delta G = \Delta H - T \Delta S$ For a reaction to be spontaneous, $\Delta G = -ve$ i.e., $\Delta H < T \Delta S$ $\therefore T > \frac{\Delta H}{\Delta S} = \frac{35.5 \times 10^3 \text{ mol}^{-1}}{83.6 \text{ JK}^{-1}}$ So, the given reaction will be spontaneous at T > 425 K 3. (2) The system is in isolated state. \therefore For an adiabatic process, q = 0 $\Delta U = q + w$ $\therefore \Delta U = w = -p \Delta V = -2.5 \text{ atm} \times (4.5 - 2.5) \text{ L}$ $= -2.5 \times 2$ L-atm $= -5 \times 101.3$ J = -506.5 J ≈ -505 J 4. (3) $\Delta G = \Delta H - T \cdot \Delta S$ For a spontaneous reaction $\Delta G = -ve$ (always) which is possible only if $\Delta H \leq 0$ and $\Delta S > 0$: spontaneous at all temperatures. 5. (1) $C + O_2 \rightarrow CO_2 + 393.5 \text{ kJ/mol}$ 12g 44g 44g is formed from 12g of carbon 35.2g is formed from $\frac{12 \times 35.2}{44}$ g of C = 9.6 g of C = 9.6/12 = 0.8 mole1 mole release heat 393.5 kJ 0.8 mole release heat = 393.5×0.8 = 314.8 kJ≈315 kg (2) Given $\Delta U = 2.1$ k cal., $\Delta S = 20$ cal. K⁻¹ 6. T = 300 K $\therefore \Delta H = \Delta U + \Delta ngRT$ Putting the values given in the equation $\Delta H = 2.1 + 2 \times \frac{2}{1000} \times 300$ = 2.1 + 1.2 = 3.3 Kcal. Now, $\Delta G = \Delta H - T \Delta S$ $= 3.3 - 300 \times \frac{20}{1000} = -2.7$ Kcal. 7. $W = -P_{ext} (V_2 - V_1)$ $P_{ext} = 2 bar$ $V_1 = 0.1 L$ $V_2 = 0.25 L$ W = -2 bar[0.25 - 0.1] L $W = -2 \times 0.15 \text{ bar L}$

W = -0.30 bar L $W = (-0.30) \times 100 = -30 J$ $2H(g) \rightarrow H_2(g)$ 8. Due to bond formation, entropy decreases. 9. $w_{PV} = -P_{ext} (V_f - V_i)$ $= -10^5 \text{ Nm}^{-2}(10^{-2} \text{ m}^3 - 10^{-3} \text{ m}^3)$ = - 10⁵ Nm⁻² ×10⁻³ [10 - 1]m³ = - 900 J 10. In adiabatic expansion cooling effect will take place, T_C will be less then T_A. in adiabatic expansion q = 0 $\Delta U = w$ $w_{PV} < 0$ $\Delta U < 0$ $nC_{vm}\Delta T < 0$ $\Delta T < 0$ $T_{\rm C}-T_{\rm A}<0$ $T_C < T_A$ $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$ 11. For spontaneous, $\Delta G < 0$ $\Delta H - T\Delta S < O$ $\Delta S > \frac{\Delta H}{T}$ $\Delta S > \frac{30 \times 10^3 \, \text{J mol}^{-1}}{10^3 \, \text{J mol}^{-1}}$ 450K $\Delta S > 66.6 \text{ J mol}^{-1} \text{K}^{-1}$ (Check by options) 12. $\Delta H = \Sigma (B.E)_{Reactants} - \Sigma (B.E)_{Products}$ $-109 = [B.E_{(H-H)} + B.E_{(Br-Br)}] - [2 \times B.E_{(H-Br)}]$ $-109 = 435 + 192 - 2 \times B.E_{(H-Br)}$ $B.E_{(H-Br)} = \frac{435 + 192 + 109}{2} = 368 \text{ KJ/mol}$ For free expansion of an ideal gas under adiabatic conditions w = 0, q = 0 and ΔT =0 13. $2Cl \rightarrow Cl_2(g); \Delta_r H < 0 \text{ and } \Delta_r S < 0$ 14. Cp - Cv = R15. Isothermal condition $dT = 0 \Rightarrow du = 0 (or) \Delta u = 0$ 16. Irreversible isothermal expansion $\Delta S_{total} \neq 0$ 17. Work can be calculated as area under the curve