9. COORDINATION COMPOUNDS

Chemistry Smart Booklet Theory + NCERT MCQs + Topic Wise Practice MCQs + NEET PYQs

www.alliantacademy.com

COORDINATION COMPOUNDS COORDINATION COMPOUNDS

• Differences between coordination compound and double bond

Coordination compound	Double salt			
A coordination compound contains a central	When two salts in stoichiometric ratio			
metal atom or ion surrounded by several	are crystallised together from their			
oppositely charged ions or neutral	saturated solution, they are called			
molecules. Th <mark>ese io</mark> ns or	double salts.			
molecules re-bonded to the metalatom or				
ion by a coordinate bond.				
Example: K ₄ [Fe(CN) ₆]	Example: FeSO ₄ .(NH ₄) ₂ SO ₄ .6H ₂ O			
	(Mohr's salt)			
They do not dissociate into simpleions	They dissociate into simple ions when			
when dissolved in water.	dissolved in water.			

- **Coordination entity:** A coordination entity constitutes a central metal atom or ion bonded to a fixed number of ions or molecules. Example: In K₄[Fe(CN)₆], [Fe(CN)₆]⁴⁻ represents a coordination entity.
- **Central atom or ion:** In a coordination entity, the atom/ion to which a fixed number of ions/groups are bound in a definite geometrical arrangement is called the central atom or ion. Example: In K₄[Fe(CN)₆],Fe²⁺ is the central metal ion.
- **Ligands:** A molecule, ion or group which is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is called a ligand. It may be neutral, positively ornegatively charged. Examples: H₂O, CN⁻, NO⁺ etc.
- **Donor atom:** An atom of the ligand attached directly to the metal is called the donor atom. Example:In the complex K₄[Fe(CN)₆], carbon is a donor atom.
- **Coordination number:** The coordination number (CN) of a metal ion in a complex can be defined as the number of ligand donor atoms to which the metal is directly bonded. Example: In the complex K₄[Fe(CN)₆], the coordination number of Fe is 6.
- **Coordination sphere**: The central atom/ion and the ligands attached to it are enclosed in squarebracket and is collectively termed the coordination sphere. Example: In the complex K₄[Fe(CN)₆],[Fe(CN)₆]⁴⁻ is the coordination sphere.
- **Counter ions:** The ions present outside the coordination sphere are called counter ions. Example: Inthe complex K₄[Fe(CN)₆], K⁺ is the counter ion.
- **Coordination polyhedron:** The spatial arrangement of the ligand atoms which are directly attached tothe central atom/ion defines a coordination polyhedron about the central atom. The most common coordination polyhedra are octahedral, square planar and tetrahedral. Examples: [PtCl₄]²⁻ is square planar, Ni(CO)₄ is tetrahedral and [Cu(NH₃)₆]³⁺ is octahedral.
- Charge on the complex ion: The charge on the complex ion is equal to the algebraic

sum of thecharges on all the ligands coordinated to the central metal ion.

- **Denticity:** The number of ligating (linking) atoms present in a ligand is called denticity.
- **Unidentate ligands:** The ligands whose only donor atom is bonded to a metal atom are called unidentate ligands. Examples: H₂O, NH₃, CO, CN⁻
- **Didentate ligands**: The ligands through which they are bonded to diamine (H₂NCH₂CH₂NH₂) has two

nitrogen atoms, and oxalate ion has two oxygen atoms which can bind with the metal atom.

- **Polydentate ligand:** When several donor atoms are present in a single ligand, the ligand is called a polydentate ligand. Example: In N(CH₂CH₂NH₂)₃, the ligand is said to be polydentate. Ethylenediaminetetraacetate ion (EDTA⁴⁻) is an important hexadentate ligand. It can bind through twonitrogen and four oxygen atoms to a central metal ion.
- **Chelate:** An inorganic metal complex in which there is a close ring of atoms caused by attachment of a ligand to a metal atom at two points. An example is the complex ion formed between ethylene diamine and cupric ion [Cu(NH₂CH₂NH₂)₂]²⁺.
- **Ambidentate ligands:** Ligands which can ligate (link) through two different atoms present in it are called ambidentate ligands. Examples: NO ⁻ and SCN⁻. NO ⁻ can link through N as well as O, while SCN⁻ can link through S as well as N.
- Werner's coordination theory: Werner was able to explain the nature of bonding in complexes. The postulates of Werner's theory are
- Metal shows two kinds of valencies primary valence and secondary valence.

Primary valence	Secondary valence
This valence is normally	This valence is non-ionisable.
ionisable.	
It is equal to the positive chargeon the	The secondary valency equals to the
central metal atom.	number of ligand atoms coordinated to the
	metal. It is also called the coordination
	number of the metal.
These valencies are satisfied by	It is commonly satisfied by neutral and
negatively charged ions.	negatively charged, sometimes by
	positively charged ligands.
Example: In CrCl ₃ , the primaryvalency	
is three. It is equal to the	
oxidation state of the centralmetal ion.	

- The ions/groups bound by secondary linkages to the metal have characteristic spatial arrangements corresponding to different coordination numbers.
- The most common geometrical shapes in coordination compounds are octahedral, square planarand tetrahedral.
- Oxidation number of the central atom: The oxidation number of the central atom

in a complex is defined as the charge it would carry if all the ligands are removed along with the electron pairs whichare shared with the central atom.

- **Homoleptic complexes:** Those complexes in which metal or ion is coordinately bonded to only onekind of donor atom. Example: $[Co(NH_3)_6]^{3+}$
- Heteroleptic complexes: Those complexes in which metal or ion is coordinately bonded to more thanone kind of donor atom. Example: [CoCl₂(NH₃)₄]⁺, [Co(NH₃)₅Br]²⁺
- **Isomers:** Two or more compounds which have the same chemical formula but different arrangementof atoms are called isomers.
- Types of isomerism
- Structural isomerism
 - Linkage isomerism
 - Solvate isomerism or hydrate isomerism
 - Ionisation isomerism
 - Coordination isomerism
- Stereoisomerism
 - Geometrical isomerism
 - Optical isomerism
- **Structural isomerism:** This type of isomerism arises due to the difference in structures of coordination compounds. Structural isomerism, or constitutional isomerism, is a form of isomerism inwhich molecules with the same molecular formula have atoms bonded together in different orders.
- **Ionisation isomerism:** This form of isomerism arises when the counter ion in a complex salt isitself a potential ligand and can displace a ligand which can then become the counter ion.

Examples: [Co(NH₃)₅Br] SO₄ and [Co(NH₃)₅ SO₄] Br

- **Solvate isomerism:** It is isomerism in which the solvent is involved as the ligand. If the solvent iswater, then it is called hydrate isomerism. Example: $[Cr(H_2O)_6]Cl_3$ and $[Cr_Cl_2(H_2O)_4]C_{l_2}.2H_2O$
- **Linkage isomerism:** Linkage isomerism arises in a coordination compound containing an ambidentate ligand. In the isomerism, a ligand can form linkage with metal through different atoms.

Examples: [Co(NH₃)₅ONO]Cl₂ and [Co(NH₃)₅NO₂]Cl₂

- Coordination isomerism: This type of isomerism arises from the interchange of ligands betweencationic and anionic entities of different metal ions present in a complex. Examples: [Co(NH₃)₆][Cr(C₂O₄)₃] and [Cr(NH₃)₆][Co(C₂O₄)₃]
- **Stereoisomerism:** This type of isomerism arises because of different spatial arrangement.
- **Geometrical isomerism:** It arises in heteroleptic complexes due to different possible geometricalarrangements of ligands.
- **Optical isomerism:** Optical isomers are those isomers which are non-superimposable mirrorimages.

• Valence bond theory:

According to this theory, the metal atom or ion under the influence of ligands can use its (n - 1)d, ns, np or ns, np or nd orbitals for hybridization to yield a set of equivalent orbitals of definite geometry such as octahedral, tetrahedral and square planar. These hybridised orbitals are allowed to overlap with ligand orbitals which can donate electron pairs for bonding.

Coordinatio nnumber	Type of hybridisation	Distribution of hybridorbitals in space
4	sp ³	Tetrahedral
4	dsp ²	Square planar
5	sp³d	Trigonal bipyramidal
6	sp ³ d ² (nd orbitals are involved; outer orbital complex or high-spin or spin- free complex)	Octahedral
6	d²sp³ [(n – 1)d orbitals are involved; inner orbital complex or low-spin or spin-paired complex]	Octahedral

• **Magnetic properties of coordination compounds:** A coordination compound is paramagnetic in nature if it has unpaired electrons and diamagnetic if all the electrons in the coordination compoundare paired.

Magnetic moment $\mu = \sqrt{n(n+2)}$ where n is the number of unpaired electrons.

- **Crystal Field Theory:** It assumes the ligands to be point charges and there is an electrostatic force of attraction between ligands and the metal atom or ion. It is a theoretical assumption.
- Crystal field splitting in octahedral coordination complexes

• Crystal field splitting in tetrahedral coordination complexes

For the same metal, the same ligands and metal-ligand distances, the difference in energy between egand t_{2g} level is

$$\Delta_{\rm t} = \frac{4}{9} \Delta_0$$

 Metal carbonyls: Metal carbonyls are homoleptic complexes in which carbon monoxide (CO) acts asthe ligand. Example: Ni(CO)₄

The metal-carbon bond in metal carbonyls possesses both σ and π characters. The metalcarbon bond in metal carbonyls possess both *s* and *p* characters. The M–C σ bond is formed by the donation of a lone pair of electrons from the carbonyl carbon into a vacant orbital of the metal. The M–C π bond is formed by the donation of a pair of electrons from a filled *d* orbital of metal into the vacant anti-bonding π^* orbital of carbon monoxide. The metal to ligand bonding creates a synergic effect which strengthensthe bond between CO and the metal.

	NCERT LIN	E BY LINE QUESTIONS			
(1.)	Which of the following coordination compound is also known as heteroleptic complex? [Page: 240]				
(a.)	$\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3+}$	(b.) $\left[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right]^+$			
(c.)	$\left[\operatorname{PtCl}_{4}\right]^{2-}$	(d.) $\left[\operatorname{Cu}(\operatorname{CN})_{4}\right]^{3-}$			
(2.)	The crystal field stabilisation energy (CF	FSE) for $[COC10]^{4-}$ is 15000 cm^{-1} . The CFSE for $[CoC1_4]^{2-}$			
	will be [Odisha NEET-2019, Page: 252]				
(a.)	6000cm ⁻¹	(b.) 16000 cm^{-1}			
(c.)	18000cm^{-1}	(d.) 8000 cm^{-1}			
(2)	Match the Column I with Column II and	select the correct order given below			
(5.)	Column I	Column II			
	Complex	IUPAC name			
	(P) $[Co(H_2NCH_2CH_2NH_2)_3]_2SO_4$	(i) Pen <mark>taaminine carbon</mark> atocobalt (III) chloride			
	$(Q) \left[Co(NH_3)_5(CO_3) \right] Cl$	(ii) Tris(ethane-1,2 -diammine) cobalt (III) sulphate			
	(R) $\left[\text{CoCl}_2(\text{en})_2 \right]$ Cl	(iii) Dichloridobis (ethane-1,2-diammine) cobalt (III) chloride			
	(S) $\left[\operatorname{CoCl}_{2}(\operatorname{en})_{2}\right]^{+}$	(iv) Dichloridobis (ethane-1,2-diammione) cobalt (III)			
(a.)	P-(i),Q-(ii),R-(iii),S-(iv)	(b.) P-(iv).Q-(iii).R-(ii).S-(i)			
(c.)	P-(ii),Q-(i),R-(iii),S-(iv)	(d.) P-(iii),Q-(ii),R-(i),S-(iv) [Page: 24]			
(4.)	Due to the presence of ambidentate la complexes of the type $\left[Pd(C_6H_5)_2(SCN) \right]$ linkage isomers	ligands coordination compounds show isomerism. Palladium N_{2} and $\left[Pd(C_{6}H_{5})_{2}(NCS)_{2}\right]$ are [QR code, NCERT Exemplar, Page: 245, HOTS] (b.) coordination isomers			
(C.)	ionisation isomers	(d .) geometrical isomers			
(5.)	Which of the following formula belongs	to Mohr's salt?			
(a.)	$KCl \cdot MgCl_2 \cdot 6H_2O$	(b.) $\operatorname{FeSO}_4 \cdot (\operatorname{NH}_4)_2 \operatorname{SO}_4 \cdot \operatorname{6H}_2 \operatorname{O}$			
(c.)	$KAI(SO_4)_2 \cdot 12H_2O$	(d.) None of these			
(6.)	Match the column I with column II and s	select the correct code given below. [Page: 247]			
	Column I	Column II			
	Hybridisation	Geometry			
	(P) sp^3	(i) Tetrahedral			
	(Q) dsp2	(ii) Square planar			
	(R) $sp^{3}d$	(iii) Trigonal bipyramidal			
	(S) sp^3d^2	(iv) Octahedral			
(a)	$P_{-}(i) \cap_{-}(ii) R_{-}(iii) S_{-}(iv)$	(h) $P_{-}(i) \cap_{-}(iii) P_{-}(iv) S_{-}(ii)$			
(a.)	$P_{(iii)} \cap_{(iv)} P_{(ii)} S_{(i)}$	(d) $P_{-}(ii) \cap (i) P_{-}(iii) \subseteq (iv)$			
(0.)	ı -(111 <i>)</i> ,Q-(11 <i>)</i> ,N-(11 <i>)</i> ,S-(1 <i>)</i>	$(\mathbf{w}, \mathbf{y} = 1^{-}(\mathbf{u}), -\mathbf{v}^{-}(\mathbf{u}), \mathbf{v}^{-}(\mathbf{u}), \mathbf{v}^{-}(\mathbf{u})$			

,⊂H₂COO- OOCH2C $H_2 = H_2$ ^{CH₂COO⁻ [Page: 241]} -OOCH2C (7.) The given compounds is (a.) hexadenate ligand. (b.) pentadentate ligand. (d.) (C.) tetradentate ligand. didenate ligand. (8.) What is the oxidation state of the compound tetracarbonyl nickel? [Page: 242] (a.) (b.) Zero One (c.) Two (d.) Four (9.) Which of the metal carbonyl have metal (M) – metal (M) bond? (a.) $\left[\operatorname{Fe}(\operatorname{CO})_{5} \right]$ (b.) $\left[Cr(CO)_{\epsilon} \right]$ (d.) $\left[Mn_2(CO)_{10} \right]$ (c.) $\left[Ni(CO) \right]$ (10.) Some statements are given below regarding coordination complexes. Select the correct statement. [Page: 249] (I) $[MnCl_6]^{3-}$ has outer orbital complex. (II) $[FeF_6]^{3-}$ involve sp³d² hybridisation. (III) $[CoF_6]^{3-}$ has paramagnetic in nature. (b.) II and III I. II and III (a.) (C.) I and III (d.) I and II (11.) Which of the following compounds show linkage isomerism [Page: 244] (b.) $\left[Co(NH_3)_6 \right] \left[Cr(CN)_6 \right]$ $\left[\operatorname{Co}(\mathrm{NH}_3)_5(\mathrm{NO}_2) \right] \mathrm{Cl}_2$ (a.) $\left[\operatorname{Co}(\operatorname{NH}_3)_5 \operatorname{SO}_4 \right] \operatorname{Br}$ (d.) $\left[Cr(H_2O)_6 \right] Cl_3$ (C.) (12.) What are the coordination number of d^2sp^3 and sp^3d^2 hybridised complex respectively? (a.) 2 and 6 (b.) 4 and 6 (d.) (c.) 6 and 6 6 and 4 (13.) What is the coordination number of the complex $\left[\operatorname{Fe}(C_2O_4)_3\right]^{3-}$? (a.) 4 (b.) 6 (d.) 0 (C.) 2 (14.) IUPAC name of the complex $\left[Cr(NH_3)_3(H_2O)_3 \right] Cl_3$ is [Page: 24]] (a.) triamminetriaquachromium(II) chloride (b.) hexaamminerriaquachromium(III) chloride (d.) (C.) diamminetriamminechromium(II) chloride triamminetriaquachromium(III) chloride (15.) 1 mol of $CoCl_3 \cdot 6NH_3$ gave how many mol of AgCl precipitate when it is treated with excess silver nitrate solution? [Page: 238]

- (a.) 3 mol of AgCl
- (C.) 1 mol of AgCl

- (b.) 2 mol of AgCl
- (d.) 4 mol of AgCl
- (16.) Match the metal ions given in column I with the spin magnetic moments of the given in column II and assign the correct code: [NEET-2O18, Page: 252]

	Column I	Column II
	(P) Co ³⁺	(i) $\sqrt{8}$ B.M.
	(Q) Cr ³⁺	(ii) $\sqrt{35}$ B.M.
	(R) Fe^{3+}	(iii) $\sqrt{3}$ B.M.
	(S) Ni ²⁺	(iv) $\sqrt{24}$ B.M.
		(v) $\sqrt{15}$ B.M.
(a)	P Q R S	(\mathbf{b}) (\mathbf{i}) (\mathbf{ii}) (\mathbf{iii}) (\mathbf{iv})
(c.)	(iv) (i) (ii) (iii) (iii)	(d.) (iii) (v) (i) (ii)
(17.) (a.) (c.)	Which of the following ligands form a chelate? Acetate Cyanide	[Page: 24O] (b.) Oxalate (d.) Ammonia
(18.)	Which of the following statement is correct with	n respect to $\left[\text{Ni}(\text{CO})_4 \right]$ and $\left[\text{Ni}\text{Cl}_4 \right]^{2-}$ [Page: 248]
(a.)	$\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$ and $\left[\operatorname{NiCl}_{4}\right]^{2-}$ both are square planar	(b.) $\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$ and $\left[\operatorname{Ni}\operatorname{Cl}_{4}\right]^{2^{-}}$ both are tetrahedral
(c.)	$\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$ is tetrahedral while $\left[\operatorname{NiCl}_{4}\right]^{2^{-}}$ is square planar	(d.) $\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$ is square planar while $\left[\operatorname{NiCl}_{4}\right]^{2^{-1}}$ is tetrahedral
(19.)	Which of the following ligands is also considere	ed as ambidentate Iigand)
(a.)	$C_2 O_4^{2-}$	(b.) NO_2^-
(c.)	NH ₃	(d.) H ₂ O
(20.)	Select the incorrect statement [Page: 246]	
(a.)	Stereoisomerism have the same chemical formula and chemical bonds bur they have different spatial arrangement.	(b.) $\left[Pt(NH_3)_2 Cl_2 \right]$ has cis and trans isomerism.
(c.)	$\left[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right]^+$ has only cis isomerism.	(d.) Ionisation isomerism is a type of structural isomerism.
(21.)	Crystal field theory explains	
(a.)	electrostatic model which considers the metal – ligand bond to be ionic.	(b.) electrostatic model which considers the metal- ligand bond to be covalent.

(c.)	electrostatic model which considers the metal- ligand bond to be ionic and covalent.	(d.)	none of these.
(22.)	The correct IUPAC name of $\left[Pt(NH_3)_2 Cl_2 \right]$ is [QR co	de, NCERT Exemplar, Page: 243, HOTS]
(a.)	diamminedichloridoplatinum (II)	(b.)	diamminedichloridoplatinum (IV)
(c.)	diamminedichloridoplatinum (0)	(d.)	dichloridodiammineplatinum (IV)
(23.)	Which of the following arrangement for spectroc	hemica	1 series is incorrect? [Page: 251]
(a.)	$\Gamma < Br^- < SCN^- < C\Gamma^-$	(b.)	$S^{2-} < F^- < OH^- < C_2 O_4^{2-}$
(c.)	$en < CN^- < CO < NCS^-$	(d.)	$edta^{4-} < NH_3 < en < CN^-$
(24.)	What is the correct IUPAC name of $\left[Ag(NH_3)_2\right]$] [Ag($(CN)_2$]?
(a.)	Diammine silver(II) dicyanoargentate(II)	(b.)	Diammine silver(I) dicyanoargentate(I)
(c.)	Diammine silver(0) dicyanosilver(II)	(d.)	Diammine silver(II) dicyanoargentate(0)
(25.)	Assertion: $\left[Cu(H_2O)_4\right]^{2+}$ absorb green light.		
	Reason: $\left[Co(NH_3)_5(H_2O) \right]^{3+}$ complementary co	olour is	yellow. [Page: 252]
(a.)	Both Assertion and Reason are true and Reason is the best explanation of Assertion.	(b.)	Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
(c.)	Assertion is true but Reason is false.	(d.)	Both Assertion and Reason are false.
(26.)	How many ions are produced from the complex [Co(N	$H_3_{6}Cl_{2}$ in solution?
(a.)	6	(b.)	4
(c.)	3	(d.)	2
(27.)	The colour of the coordination compounds dependence or dependence of absorption of wavelength of light in the v $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3^+}, \left[\operatorname{Co}(\operatorname{CN})_6\right]^{3^-}, \left[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6\right]^{3^+}$	ds on th visible	ne crystal field splitting. What will be the correct region, for the complexes,
[QR o	code, NCERT Exemplar, Page: 252, HOTS]		
(a.)		(b.)	
	$\left\lfloor \operatorname{Co}(\operatorname{CN})_{6}\right\rfloor^{J^{*}} > \left\lfloor \operatorname{Co}(\operatorname{NH}_{3})_{6}\right\rfloor^{J^{*}} > \left\lfloor \operatorname{Co}(\operatorname{H}_{2}\operatorname{O})_{6}\right\rfloor^{J^{*}}$		$\left[\operatorname{Co}(\mathrm{NH}_{3})_{6}\right]^{J^{+}} > \left[\operatorname{Co}(\mathrm{H}_{2}\mathrm{O})_{6}\right]^{J^{+}} > \left[\operatorname{Co}(\mathrm{CN})_{6}\right]^{J^{+}}$
(c.)		(d.)	
	$\left[\operatorname{Co}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{3+} > \left[\operatorname{Co}(\operatorname{NH}_{3})_{6}\right]^{3+} > \left[\operatorname{Co}(\operatorname{CN})_{6}\right]^{3-}$		$\left[\operatorname{Co}(\mathrm{NH}_{3})_{6}\right]^{3+} > \left[\operatorname{Co}(\mathrm{CN})_{6}\right]^{3-} > \left[\operatorname{Co}(\mathrm{H}_{2}\mathrm{O})_{6}\right]^{3+}$
(28.)	Which of the following will not show geometrica	l isome	erism? [Page: 244]
(a.)	$\left[\operatorname{Cr}(\operatorname{NH}_{3})_{4}\operatorname{Cl}_{2}\right]\operatorname{Cl}$	(b.)	$\left[\operatorname{Co(en)}_{2}\operatorname{Cl}_{2}\right]\operatorname{Cl}$
(c.)	$\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{NO}_2\right]\operatorname{Cl}_2$	(d.)	$\left[Pt(NH_3)_2 C \right]_2]$

(29.)	Given below some coordinate complexes with complex. (I) $\left[\operatorname{NiCl}_{2}(\operatorname{PPh}_{3})_{2}\right]$: Dichloridobis(triphenyl pho	IUPAC osphine	C name. Identify the incorrect name with their [Page: 242])nickel(III)		
	(II) $\left[Cr(NH_3)_3(H_2O)_3 \right] Cl_3$: Triamminetriaqua chromium(III) chloride				
	(III) Hg $[Co(SCN)_4]$: Mercury tetrathiocynato c	cobaltat	e(II)		
(a.)	I and II	(b.)	I and III		
(c.)	II and III	(d.)	I, II and III		
(30.)	Which one of the following ions exhibits d-d tran 252]	sition a	nd paramagnetism as well? [NEET-2018, Page:		
(a.)	$\operatorname{CrO}_4^{2-}$	(b.)	$Cr_2O_7^{2-}$		
(c.)	MnO ₄ -	(d.)	MnO_{4}^{2-}		
(31.)	Which of the following option is correct with res	pect to	the inner and outer orbital complex?		
(a.)	$\left[\frac{\text{Co}(\text{NH}_3)_6}{3} \right]^{3+}$ is inner orbital complex and	(b.)	$\left[Ni \left(NH_3 \right)_6 \right]^{2+}$ is inner orbital complex and		
	$\left[\frac{Ni}{NH_3} \right]_6^{2+}$ is outer orbital complex.		$\left[Co(NH_3)_6 \right]^{3+}$ is outer orbital complex.		
(c.)	Both $\left[\text{Co}(\text{NH}_3)_6 \right]^{3+}$ and $\left[\text{Ni}(\text{NH}_3)_6 \right]^{2+}$ are	(d.)	Both $\left[\text{Co}(\text{NH}_3)_6 \right]^{3+}$ and $\left[\text{Ni}(\text{NH}_3)_6 \right]^{2+}$ are		
	inner orbital complex.		outer orbital complex.		
(32.)	The spin only magnetic moment of $[MnBr_1]^2$	is 5.9 I	3.M. What is the geometry of the complexion?		
. ,	[Page: 249]				
(a.)	Tetrahedral	(b.)	Square planar		
(c.)	Trigonal planar	(d.)	None of these		
(33.)	Which isomer in the molecule $\left[\text{PtCl}_2(\text{en})_2 \right]^{2+}$ sl	hows op	otical activity? [Page: 245]		
(a.)	Both cis and trans	(b.)	Neither cis nor trans		
(c.)	Only cis	(d.)	Only trans		
(34.)	Chlorophyll, hemoglobin and vitamin B_{12} are co	ordinat	ion compounds of		
(a.)	cobalt, iron and magnesium respectively	(b.)	magnesium, cobalt and iron respectively		
(c.)	magnesium, iron and cobalt respectively	(d.)	iron, cobalt and magnesium respectively.		
(35.)	When 1 mol $CrCl_3 \cdot 6H_2O$ is treated with excess the complex is [QR code, NCERT Exemplar, P	of AgN age: 2 4	IO ₃ ,3 mol of AgCl are obtained. The formula of O, HOTS]		
(a.)	$\left[\mathrm{CrCl}_{3}(\mathrm{H}_{2}\mathrm{O})_{3}\right]\cdot 3\mathrm{H}_{2}\mathrm{O}$	(b.)	$\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2}\mathrm{O}\right)_{4}\right] \cdot 2\mathrm{H}_{2}\mathrm{O}$		
(c.)	$\left[\operatorname{CrCl}(\operatorname{H}_{2}\operatorname{O})_{5}\right]\operatorname{Cl}_{2}\cdot\operatorname{H}_{2}\operatorname{O}$	(d.)	$\left[Cr(H_2O)_6 \right] Cl_3$		
(36.)	Which of the following conditions is necessary f	for t ³ e ¹	configuration and what is the nature of ligands?		
(a.)	$\Delta_{0} < P$, weak field ligand	(b.)	$\Delta_{o} < P$, strong field ligand		
(c.)	$\Delta_{o} > P$, weak field ligand	(d.)	$\Delta_{_{\rm O}} > P$, strong field ligand		

(37.)	Assertion: IUPAC name of $\left[Co(NH_3)_4(H_2O) O(NH_3)_4 \right]$	$Cl]Cl_2$ i	s tetraammineaquachloridocobalt(III) chloride
	Reason: Chlorine is the central element in the co	ompoun	d $\left[Co(NH_3)_4 (H_2O)Cl \right] Cl_2$. [Page: 242]
(a.)	Both Assertion and Reason are true and Reason is the best explanation of Assertion.	(b.)	Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
(c.)	Assertion is true bur Reason is false.	(d.)	Both Assertion and Reason are false.
(38.)	Which of the following complex is also known	as Wilki	nson catalyst? [Page: 252]
(a.)	$\left[Ag(S_2O_3)_2 \right]^{3-1}$	(b.)	$\left[\left(\mathrm{Ph}_{3}\mathrm{P}\right)_{3}\mathrm{RhCl}\right]$
(c.)	$\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$	(d.)	$\left[C_0(C_2O_4)_2 \right]^{3-1}$
(39.)	What are the geometry of $[Ni(CO)_4]$, Fe(CO) ₅] and [0	$Cr(CO)_6$ respectively? [Page: 255]
(a.)	Trigonal bipyramidal, tetrahedral, octahedral	(b.)	Tetrahedral, trigonal bipyramidal, octahedral
(c.)	Octahedral, trigonal bipyramidal, tetrahedral	(d.)	Tetrahedral, octahedral, trigonal bipyramidal
(40.)	The type of isomerism shown by the complex	CoCl ₂ (e	en) ₂] is [NEET-2018, Page: 245]
(a.)	geometrical isomerism	(b.)	coordination isomerism
(c.)	ionisation isomerism	(d.)	linkage isomerism
(41.)	$\left[Co(NH_3)_6 \right] \left[Cr(CN)_6 \right]$, which type of isomer	ism aris	es in the given complex?
(a.)	Linkage isomerism	(b.)	Coordination isomerism
(C.)	Ionisation isomerism	(d.)	Solvate isomerism
(42.)	Which of the following is the correct chemical f	ormula	of Mohr's salt? [Page: 239]
(a.)	$Kal(SO_4), \cdot 12H_2O$	(b.)	$KCl \cdot MgCl_2 \cdot 6H_2O$
(c.)	$FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2O$	(d.)	None of these
(43.)	Which of the following ligands are didentate lig	and?	
(a.)	$C_2 O_4^{2-}$	(b.)	H ₂ NCH ₂ CH ₂ NH ₂
(c.)	Both (a) and (b)	(d.)	Neither (a) nor (b)
(44.)	Which of the following statements regarding pri	mary ar	nd secondary valences is correct?
(a.)	Primary valences are ionisable while secondary valences are non-ionisable.	(b.)	Primary valences are non-ionisable while secondary valences are ionisable.
(c.)	Both primary and secondary valences are non-ionisable.	(d.)	Both primary and secondary valences are ionisable.
(45.)	Select the compound which shows ionization iso	omerism	
(a.)	$\left[\operatorname{Co}(\operatorname{NH}_3)_5(\operatorname{SCN})\right]\operatorname{Cl}_2$	(b.)	$\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Cl}\right]\operatorname{SO}_4$
(c.)	$\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]\left[\operatorname{Co}(\operatorname{CN})_6\right]$	(d.)	$\left[\operatorname{Co}(\operatorname{NH}_3)_5(\operatorname{NO}_2)\right](\operatorname{NO}_3)_2$
(46.)	Hexaamminenickel(II) hexanitrocobaltate(III) ca	an be wi	ritten as [Page: 242]

www.alliantacademy.com

			· · · · · · · · · · · · · · · · · · ·
(a.)	$\left[\operatorname{Ni}(\operatorname{NH}_3)_6\right]_2\left[\operatorname{Co}(\operatorname{NO}_2)_6\right]_3$	(b.)	$\left[\operatorname{Ni}(\operatorname{NH}_3)_6\right]_3\left[\operatorname{Co}(\operatorname{NO}_2)_6\right]_2$
(c.)	$\left[\operatorname{Ni}(\operatorname{NH}_3)_6\right]\left[\operatorname{Co}(\operatorname{NO}_2)_6\right]$	(d.)	$\left[\operatorname{Ni}(\operatorname{NH}_3)_6(\operatorname{NO}_2)_6\right]$ Co
(47)		1 : 1 :	1
(47.)	Out of the following two coordination entities $(x_1, y_2) = \sum_{i=1}^{n} (x_i, y_i) = \sum_{i=1}^{$	es, which is	chiral (optically active) . [Page: 244]
	(1) $\operatorname{cis} - [\operatorname{CrCl}_2(\operatorname{Ox})_2]$		
	(II) trans $-\left[\operatorname{CrCl}_{2}\left(\operatorname{Ox}\right)_{2}\right]^{3-}$		
(a.)	Only I	(b.)	Only II
(c.)	Both I and II	(d.)	None of these
(48.)	Which of the following has longest C-O bon	d length?	NEET-2016, Page: 252]
(Free	e C – O bond length in CO is 1.128Å)		
(a.)	$\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$	(b.)	$\left[\operatorname{Co}(\operatorname{CO})_{A}\right]^{-}$
(c.)	$\left[\operatorname{Fe}(\operatorname{CO})_{i} \right]^{2}$	(d.)	$[Mn(CO)]^+$
(49.)	What is the primary valency of the given con	npou <mark>nds C</mark> r	$Cl_2, CoCl_2$ and $PdCl_2$ respectively? [Page: 238]
(a)	2 2 and 3	(h)	3 2 and 2
(c.)	2, 2 and 3	(d)	3, 2 and 2
(50.)	Select the correct statement	(u.)	5,2 and 5
(a.)	The secondary valences are jonisable.	(b.)	The primary valences are jonisable.
(c.)	The primary and secondary valences both a	are (d.)	None of these.
(01)	n <mark>on-</mark> ionisable.		
		OTIO	
	TOPIC WISE PRA		QUESTIONS
	TOPIC 1: Coordination Num	ber, Nome	enclature and Isomerism
1.	Select the correct IUPAC name for		
	[Pt(C ₅ H ₅ N) ₄] both same [PtCl ₄] complex:		
	1) Tetrapyridineplatinate (II) tetrachloridopla	antinate(II)	
	2) Tetrapyridineplatinum (II) tetrachloridopla	antinum(II)	
	3) Tetrapyridineplatinate (II) tetrachloridopla	ntinum(II)	
	4) Tetrapyridineplatinum (II) tetrachloridopla	antinate(II)	
2.	$[Pt(NH_3)_4Cl_2]$ Br ₂ complex can show :		
	1) Hydrated as well as ionization isomerism	2) Io	onization as well as geometrical isomerism
	3) Linkage as well as geometrical isomerism	4) Ie	onization as well as optical isomerism
3.	The complex ion [Pt $(NO_2)(Py)$ (NH_3) (NH_2)	OH)]+ will g	give
	1) 2 isomers (Geometrical)	2) 3 isomer	s (Geometrical)
	3) 6 isomers (Geometrical)	4) 4 isomer	s (Geometrical)
4.	The geometry of Ni(CO) ₄ and Ni(PPh ₃) ₂ Cl ₂ a	are	
	1) both square planar	2) tetrahedr	al and square planar
-	3) both tetrahedral	4) None of	these
5.	In the reactions		

$$[CoCL (NH_2)_{1}]^{+} CI \rightarrow [CoCL_{1}(NH_2)_{2}] + NH3 two isomers of the product are obtained. The initial complex is 0 trans isomer 3 cls or trans isomers 4) None of these
6. Possible isomerism in complexes [Co(NH_2)_{N}(NO_3)] and [Co(NH_2)_{N}(NO_3)[CL; respectively are:
1) Linkage and optical 2) Geometrical and linkage
3) Optical and ionization 4) Linkage and geometrical
7. Both geometrical and optical isomerisms are shown by
1) [Co(on_2)_{C}]^{-1} 2) [Co(NH_2)_{2}Cl]^{+1} 3) [Co(NH_2)_{2}CL_{1}^{+1} 4) [Cr(ox)_{2}]^{2-}$$

8. The complex given is
(ii) non-superimposable on its mirror images (ii) optically inactive
(iii) rotate plane polarised light (iv) planar
1) (i) and (ii) 2) (i) and (iv) 3) (i), (ii) and (iii) 4) (ii) only
9. An example of double salt is
1) [Bacing powder 2) [KJFe(CN)_{1} 3) [Hypo 4) Potash alum
10. Which of the following type of isomerism is shown by given complex compound?
H₃N $\rightarrow \frac{1}{N_{N-1}} = NO_{2}$
(i) non-superimposable (M1)2)(X)(Y)], where A.B.X and Y are different ligands and M is a metal ion is
1) optically inactive 2) rotate plane polarized light
3) incomplete information 4) can't be said
12. Which of the following will give maximum number of isomers?
1) [N(Co(N)_{N}]^{-2} 2) [N(Fe(N)_{N}]^{-3}] [Cr(SN)_{2} (NI_{2})_{1} 4) [Co(NH_{3})_{1} C_{1}^{-1}]
1) [Co(N)_{N}]^{-2} 2) [Cr(C,Q_{1})_{1}^{-3} 3] [Cr(SN)_{2} (NI_{2})_{1} 4) [Co(NH_{3})_{1} C_{1}^{-1}]
1) [Co(N)_{N}]^{-2} 2) [Cr(C,Q_{2})_{1}^{-3} 3] [Cr(SN)_{2} (NI_{2})_{1} 4) [Co(NH_{3})_{1} C_{1}^{-2}]
1) [Co(N)_{N}]^{-2} 2) [Cr(C,Q_{2})_{1}^{-3} 3] [Cr(SN)_{2} (NI_{2})_{1} 4) [Cu(NH_{3})_{1} C_{1}^{-2}]
1) [Co(N)_{N}]^{-2} 2) [Cr(C,Q_{2})_{1}^{-3} 3] [Cr(SN)_{2} (NI_{2})_{1} 4) [Cu(NH_{3})_{1} C_{1}^{-2}]
1) [Cr(H_{2}O)_{2}(ONO)[C1 4) [Cr(H_{2}O)_{2}(NO_{2})]
3) [Cr(H_{2}O)_{2}(ONO)[C1 4) [Cr(H_{2}O)_{2}(NO_{2})]
3) [Cr(H_{2}O)_{2}(ONO)[C1 4) [Cr(H_{2}O)_{2}(NO_{2})]
1) [Das bonds formed to two metals ions 2) has a charge of +2 or -2
3) forms complex ions with a charge of +2 or -2
3) forms

	3) Coordination isom	nerism	4) Geometrical isomerism		
18.	For which value of the x, and y, the following square planar compound shows geometrical isomers [Pt				
	$(Cl)_{x} (Br)_{y}]^{2-}$				
	1) 1, 3	2) 3, 1	3) 2, 2	4) 1, 1	
19.	The structure of which	ch of the following chl	oro species can be exp	lained on the basis of dsp^2	
	hybridization?				
	1) $PdCl_{4}^{2-}$	2) FeCl_{4}^{2-}	3) CoCl ₄ ^{2–}	4) NiCl ₄ ²⁻	
20.	Which of the followi	ng is not chelating age	ent?		
	1) thiosulphato	2) oxalate	3) glycinato	4) ethylene diamine	
21.	A similarity between	optical and geometric	al isomerism is that		
	1) each gives equal n	umber of isomers for a	a given compound		
	2) if in a compound of	one is present then so i	s the other		
	3) both are included i	in stereoisomerism			
22	4) they have no simil	arity			
22.	Which is the pair of a	ambidentate ligand?			
	1) CN^{-} , NO_{2}^{-}	2) NO_3^- , SCN ⁻	3) N_3^-, NO_2^-	4) NCS ⁻ , $C_2O_4^{2-}$	
23.	Number of water mo	lecules acting as ligand	ds in C <mark>uSO4.5H2O, Zn</mark>	SO4 .5H2O,FeSO4 .7H2O	
	respectively are				
	1) 5, 5, 7	2) 4, 5, 4	3) 4, 4, 6	4) 4, 4, 7	
24.	The number of ions f	formed on dissolving o	one molecule of FeSO ₄	$(NH_4)_2SO_4.6H_2O$ in water is:	
25	1) 4	2) 5	3) 3	4) 6	
25.	In octaamine-µ-dihyo	droxodiiron(III) sulpha	ite, the number of brid	ging ligands is	
		2)1	3) 3	4) None of these	
	PIC 2: Magnetic	c Moment, valei	nce Bond I neor	y and Crystal Field Theory	
26.	The crystal field split	ting energy for octahe	dral (Δ_0) and tetrahed	ral (Δ_t) complexes is related as	
	1) $\Delta_{t} = -\frac{1}{\Delta_{0}}$	2) $\Delta_t = -\frac{4}{\Delta_0}$	3) $\Delta_{t} = -\frac{3}{2}\Delta_{0}$	4) $\Delta_t = -\frac{2}{2}\Delta_0$	
	2 0	, ¹ 9 ⁰	4	, ¹ 5 ⁰	
27.	Ammonia will not fo	rm complex with $2 \times 10^{2+}$		0.012+	
20	1) Ag^{2}	2) Pb ²⁺	3) Cu^{2+}	4) Cd^{2}	
28.	Which of the followi	ng complex compound $2 V [E_{\alpha}(CN)]$	1 is low spin, inner orb	(1) ICr(U, Q) ICl	
20	1) $[NI(N\Pi_3)_6]CI_2$	2) K3[Fe(CN)6]	$5) \mathbb{K}_2[\mathbb{P}(\mathbb{C}_{16}]]$	4) $[Cr(H_2O)_6]CI_3$	
29.	As aqueous solution	s solution the formula	of the complex is	oment. Assuming the complex as	
	1) $[TiBr_{4}]^{3-}$	2) $[Ti(H_2O)_6]Br_4$	3) $[TiBr_6]^{2-}$	4) $[Ti(H_2O)_4Br_2]$	
30.	Which of the followi	ng option is having matrices $\frac{1}{2}$	aximum number of unr	paired electrons –	
50.	1) A tetrahedral d^6 io	$n = 2) [Co(NH_3)]$	3 ³⁺		
	3) A square planar d^7	ion 4) A co-ordin	ation compound with	magnetic moment of 5.92 B.M.	
31.	The degeneracy of <i>d</i> -	orbitals is lost under :	1	5	
	(I) Strong field ligan	d	(II) Weak field ligan	d	
	(III) Mixed field ligation	nd	(IV) Chelated ligand	field	
	1) I, II and IV	2) I and II	3) I, II, III and IV	4) I, II and III	
32.	Relative to the average	ge energy in the spheri	cal crystal field, the t ₂	g orbitals in tetrahedral field is	
	1) raised by (2/5) Δ_t		2) lowered by (2/5)	Δ_{t}	
	3) raised by (3/5) Δ .		(1) lowered by $(1/5)$	٨	
	, , , ,		+) lowered by (1/5)	∠ t	
33.	Which of the followi	ng outer orbital compl	ex has highest magnet	ic moment?	
33.	Which of the followi 1) [Mn(NH ₃) ₆]Cl ₂	ng outer orbital compl 2) [Cr(NH3)6	ex has highest magnet: $ Cl_3 = 3 $ [Ni(NH ₃)	ic moment? $ Cl_2$ 4) $[Co(NH_3)_6]Cl_3$	

34.	Which of the following are inner orbital complex (i.e., involving <i>d2sp3</i> hybridisation) and is			
	paramagnetic in nature?			
	1) $[Mn(CN)_6]^{3-}$, $[Fe(CN)_6]^{3-}$, $[Co(C_2O_4)_3]^{3-}$	2) $[MnCl_6]^{3-}$, $[FeF_6]^3$	-, [CoF ₆] ³⁻	
	3) $[Mn(CN)_6]^{3-}$, $[Fe(CN)_6]^{3-}$	4) $[MnCl_6]^{3-}$, $[Fe(CN)]^{3-}$	$[0.1]^{3-}, [Co(C_2O_4)_3]^{3-}$	
35.	Mn^{2+} forms a complex with Br ⁻ ion. The magnetic	moment of the complex	k is 5.92 B.M. What would be	
	the probable formula and geometry of the complex	x?		
	1) $[MnBr_6]^{4-}$, octahedral 2) $[MnBr_4]^{2-}$. square planar		
	3) $[MnBr_4]^{2-}$, tetrahedral 4) $[MnBr_5]^{3-}$	trigonal bipyramidal		
		,		
36	Which of the following hydrate is diamagnetic?			
50.	1) $[Mn(H_2O)_{\ell}]^{2+}$ 2) $[Cu(H_2O)_{\ell}]^{3+}$	3) $[C_0(NH_2)_{\ell}]^{3+}$	4) $[C_0(H_2O)_{\ell}]^{2+}$	
37	Which one of the following will show paramagnet	ism corresponding to 2	unpaired electrons?	
57.	(Atomic numbers : $Ni = 28$ Fe = 26)	isin conception of z	unpured electrons.	
	(Atomic numbers : $N1 = 28$, $PC = 20$) 1) [FaF. 1^{3} - 2) [NiCL1 ² -	3) [Fe (CN) $^{13-}$	(CN) $(1)^{2-1}$	
20	2) [NIC14] CN is a strong field ligand. This is due to the foot	$(CN)_{6}$	(CIV)4]	
50.	CN- is a strong field ligand. This is due to the fact			
	2) it carries negative charge 2) it 1	s a pseudonande	·····	
20	3) It can accept electrons from metal species 4) it f	forms high spin complex	tes with metal species	
39.	when pink complex, $[Co(H_2O)_6]^{2^{-1}}$ is dehydrated t	he colour changes to blu	ie. The correct explanation for	
	the change is :			
	1) The octahedral complex becomes square planar.	2) A tetrahedr	al complex is formed.	
	3) Distorted octahedral structure is obtained.			
	4) Dehydration results in the formation of polymer	ric species.		
40.	The crystal field stabilization energy (CFSE) is the	e highest for		
	1) $[CoF_4]^{2-}$ 2) $[Co(NCS)_4]^{2-}$ -3) $[C$	o(NH ₃) ₆] ³⁺	4) $[CoCl_4]^{2-}$	
41.	Which of the following complex ion is not expected	ed to absorb visible ligh	t ?	
	1) $\left[\operatorname{Ni}(\operatorname{CN})_{4}\right]^{2-}$ 2) $\left[\operatorname{Cr}(\operatorname{NH}_{3})_{6}\right]^{3+}$ 3) $\left[\operatorname{F}\right]^{3+}$	$\left[e\left(H_2 O \right)_6 \right]^{2+}$	4) $\left[\text{Ni} (\text{H}_2 \text{O})_6 \right]^{2+}$	
42.	Crystal field stabilization energy for high spin d^4 of	octahedral complex is:		
	1) $-1.8 \Delta_0$ 2) $-1.6 \Delta_0 + P$ 3) -1	1.2 Δ_0	$(4) - 0.6 \Delta_0$	
43.	Which of the following is incorrect regarding spec	trochemical series?		
	1) NH ₃ > H ₂ O 2) $F^- > C_2 O_4^{2-}$ 3) N ⁴	$CS^{-} > SCN^{-}$	4) en > edta ⁴⁻	
44	Of the following complex ions which is diamagnet	etic in nature?		
	1) $\text{Ni}(\text{CN})$ ²⁻ 2) $\text{Ni}(\text{CN})$ ²⁻ 3) [C	$uC1_{4}1^{2-}$	4) $[C_{0}E_{c}]^{3-}$	
15	The <i>d</i> -electron configurations of Cr^{2+} Mn^{2+} Ee^{2+}	and Co^{2+} are d^4 d^5 d^6 as	d^{7} respectively. Which one	
ч.Э.	of the following will exhibit minimum paramagne	tic behaviour?	id <i>a</i> , respectively. which one	
	1) $[M_{P}(H_{P}O)_{1}]^{2+}$ 2) $[F_{P}(H_{P}O)_{2}]^{2+}$ 2) $[C_{P}(H_{P}O)_{2}]^{2+}$ 2) $[$	$(H_{\bullet}O)_{\bullet}^{12+}$	4) $[Cr(H_{2}O)]^{2+}$	
	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\$	0(1120)6]	$(1120)_{6}$	
16	(At, nos. $CI = 24$, $MII = 25$, $FC = 20$, $CO = 27$) Which of the following complex compounds will.	avhibit high act paramag	notic hohoviour?	
40.	which of the following complex compounds will a $(A \pm N_0 + T_1 = 22) Cr = 24 C_0 = 27 T_2 = 20)$	exhibit nighest paramag	netic benaviour?	
	(Al. NO. : $\Pi = 22$, $Cf = 24$, $C0 = 27$, $Z\Pi = 50$) 1) [T: (NIL)] ³⁺ 2) [Cr (NIL)] ³⁺ 2) [C	- (NUL) 13+	4) $[7, (NIII)]^{2+}$	
17	1) $\begin{bmatrix} 11 \\ (N\Pi_3)6 \end{bmatrix}^{5}$ 2) $\begin{bmatrix} Cr \\ (N\Pi_3)6 \end{bmatrix}^{5}$ 5) $\begin{bmatrix} Cr \\ V \end{bmatrix}$	0 (NII3)6] ⁵	4) $[ZII (INH3)6]^{-1}$	
47.	which one of the following is an outer orbital con- 1) $[N!(OUL), 1^{2+}$ 2) $[7, (OUL), 1^{2+}$ 2) [6]	(MIL) 13+	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
10	1) $[N1(NH_3)_6]^2$ 2) $[Zn(NH_3)_6)]^2$ 3) $[Cn(NH_3)_6]^2$ 3) $[Cn(NH_3)^2$ 3) [Cn(NH_3)_6]^2 3) $[Cn(NH_3)^2$ 3) [Cn(NH_3	$\Gamma(1NH3)6]^{\circ}$	4) $[CO(NH_3)_6]^{-1}$	
48.	which of the following is the limitation of valence	bond theory?		
	1) It does not distinguish between weak and strong	g ligands.		
	2) It does not give quantitative interpretation of ma	agnetic data.		
	5) It does not explain the colour exhibited by coord	dination compounds		
	4) All of these			

49.	Low spin complex of	of <i>d</i> ⁶ -cation in an octahe	dral fiel	d will have the	e followi	ing energy :
	$1) \frac{-12}{5}\Delta_0 + P$	2) $\frac{-12}{5}\Delta_0 + 3P$	3) $\frac{-2}{5}$	$\Delta_0 + 2P$		$4) \ \frac{-2}{5}\Delta_0 + P$
	$(\Delta_0 = Crystal Field$	Splitting Energy in an o	octahedr	al field, P = El	ectron p	airing energy)
50.	Among the following	ng complexes the one wl	hich sho	ws zero crysta	l field st	abilization energy (CFSE):
	1) $[Mn(H_2O)_6]^{3+}$	2) $[Fe(H_2O)_6]^{3+}$	3) [Co	$(H_2O)_6]^{2+}$	4) Nor	ne of these
51.	$[Sc(H_2O)_6]^{3+}$ ion is					
	1) colourless and di	amagnetic	2) colo	oured and octal	hedral	
	3) colourless and pa	aramagnetic	4) colo	oured and param	magneti	с
52.	One mole of the con	mplex compound Co(NI	H ₃)5Cl ₃ ,	gives 3 moles	of ions	on dissolution in water. One
	mole of the same co	mplex reacts with two r	noles of	AgNO3 solution	on to yie	eld two moles of AgCl (s). The
	formula of the comp	plex is				
	1) [Co(NH ₃) ₃ Cl ₃]. 2	2 NH ₃	2) [<mark>Co</mark>	$(NH_3)_4Cl_2]Cl$. NH3	
	3) [Co(NH ₃) ₄ Cl] Cl	2. NH3	4) [<mark>Co</mark>	$(NH_3)_5Cl]Cl_2$		
53.	How many EDTA (ethylenediaminetetraace	tic acid	molecules are	e require	d to make an octahedral
	complex with a Ca ²	+ ion?				
	1) One	2) Two	3) Six		4) Thr	ee
54.	The molar ionic cor	nductances of the octahe	dral con	nplexes:		
	(I) PtCl4.5NH3	(II) PtCl ₄ .4NH ₃	(III) P	tCl ₄ .3NH ₃	(IV) P	tCl ₄ .2NH ₃
	F <mark>oll</mark> ow the order					
	1) $I < II < III < IV$	2) IV < III < II < I	3) III <	< IV < II < I	4) IV <	< III < I < II
55.	The most stable con	nplex among the follow:	ing is			
	1) K ₃ [Al(C ₂ O ₄) ₃]	2) $[Pt(en)_2]Cl$	3) [Ag	(NH ₃) ₂]Cl		4) K ₂ [Ni(EDTA)]
56.	Consider the follow	ving complex [Co(NH ₃)5	CO ₃]Cl	O4. The coordi	nation n	umber, oxidation number,
	number of <i>d</i> -electro	ons and number of unpai	red <i>d</i> -el	ectrons on the	metal ar	e respectively.
	1) <mark>6, 3,</mark> 6, 0	2) 7, 2, 7, 1	3) 7, 1	, 6, 4		4) 6, 2, 7, 3
57.	Nickel ($Z = 28$) con	nbines with a uninegativ	ve mono	dentate ligand	to form	a diamagnetic complex
	[NiL ₄] ^{2–} . The hybrid	disation involved and the	e numbe	er of unpaired e	electrons	s present in the complex are
	respectively:					
	1) sp^3 , two	2) dsp^2 , zero	3) <i>dsp</i>	² , one		4) sp^3 , zero
		TOPIC 3: Orga	nome	tallic Com	pound	ls
58.	The formula of ferre	ocene is			-	
	1) $[Fe(CN)_6]^{4-}$	2) $[Fe(CN)_6]^{3-}$	3) [Fe	(CO)5]		4) $[(C_5H_5)_2Fe]$
59.	The organometallic	compound is :	2) T:((
60	1) $\Pi(OCOCH_3)_4$ Which of the follow	$2) I1(C_2H_4)_4$	3) 11((tal_ carb	OC_6H_5)4 on bond?		4) $\Pi(OC_2H_5)_4$
00.	1) Al(OC ₂ H ₅) ₃	2) C_2H_5MgBr	3) K[P]	$Pt(C_2H_4)C_{3}$		4) Ni(CO)4
61.	Which of the follow	ving is an organometallic	c compo	ound?		.)()+
	1) Lithium methoxi	de 2) Lithium acetate	3) Lith	nium dimethyla	amide	4) Methyl lithium
62.	In Fe(CO) ₅ , the Fe -	- C bond possesses				
()	1) ionic character	2) σ -character only	3) $\pi - \alpha$	character		4) both σ and π characters
63.	Which of the follow	ving may be considered	to be an	organometallie	c compo	4) [Co (cn) c] Cl
64	$CH_2 = M\sigma = Br$ is at	n organometallic compo	11 und due	5) \mathbf{K}_3 [re (\mathbf{C}_2)	04)3]	(C0 (C11)3) C13
04.	1) Mg – Br bond	2) C - Mg bo	nd	3) C – Br bon	nd	4) C – H bond.
65.	Oxidation state of "	V" in $Rb_4K[HV_{10}O_{28}]$ is	5	,		,
	1) + 5	2) + 6		3)+7/5		(4) + 4
66.	For $[Co_2(CO)_8]$, wh	at is the total number of	metal –	carbon bonds	and nur	nber of metal–metal bonds.
	1) 10 ,1	2) 8, 2		3) 8, 1	4) 10,	0

67.	Coordination compounds have great importance in biological systems. In this context which of the following statements is incorrect? 1) Cyanocobalamin is B ₁₂ and contains cobalt	ne
	 2) Haemoglobin is the red pigment of blood and contains iron 3) Chlorophylls are green pigments in plants and contain calcium 4) Carboxypeptidase - A is an exzyme and contains zinc. 	
68.	An organometallic compound amongst the following is 1) Ferrocene 2) Diethyl zinc3) Tetraethyl lead (TEL) 4) All of these	
69.	Which of the following carbonyls will have the strongest C – O bond ? 1) $[Mn (CO)_6]^+$ 2) $[Cr (CO)_6]$ 3) $[V (CO)_6]^-$ 4) $[Fe (CO)_5]$	
70.	An example of a sigma bonded organometallic compound is : 1) Grignard's reagent 2) Ferrocene 3) Cobaltocene 4) Ruthenocene	
	NEET PREVIOUS YEARS QUESTIONS	
1.	Iron carbonyl, Fe(CO)5 is	[2018]
2.	1) Tetranuclear 2) Mononuclear 3) Dinuclear 4) Trinuclear The type of isomerism shown by the complex [CoCl ₂ (en) ₂] is	[2018]
	1) Geometrical isomerism2) Coordination isomerism3) Linkage isomerism4) Ionization isomerism	
3.	The geometry and magnetic behaviour of the complex [Ni(CO)4] are 1) Square planar geometry and diamagnetic 2) Tetrahedral geometry and diamagnetic 3) Tetrahedral geometry and paramagnetic 4) Square planar geometry and paramagnetic	[2018]
4.	An example of a sigma bonded organometallic compound is : 1) Grignard's reagent 2) Ferrocene 3) Cobaltocene 4) Ruthenocene	[2017]
5.	The correct order of the stoichiometries of AgCl formed when AgNO ₃ in excess is treated with th complexes : CoCl ₃ .6NH ₃ , CoCl ₃ .5NH ₃ , CoCl ₃ .4NH ₃ respectively is : 1) 3 AgCl, 1 AgCl, 2 AgCl 3) 2 AgCl, 3 AgCl, 1 AgCl 4) 1 AgCl, 3 AgCl, 2 AgCl	ne [2017]
6.	Correct increasing order for the wavelengths of absorption in the visible region for the complexe Co^{3+} is : 1) $[Co(H_2O)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$ 3) $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Co(H_2O)_6]^{3+}$ 4) $[Co(en)_3]^{3+}$, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$	s of [2017]
7.	Pick out the correct statement with respect to $[Mn(CN)_6]^{3-}$ 1) It is sp^3d^2 hybridised and tetrahedral 3) It is dsp^2 hybridised and square planar 4) It is sp^3d^2 hybridised and octahedral	[2017]
8.	Which of the following has longest C–O bond length? (Free C–O bond length in CO is 1.128Å) 1) Ni(CO) ₄ 2) [Co(CO) ₄] 3) [Fe(CO) ₄] ^{2–} 4) [Mn(CO) ₆] ⁺ The sum of accordination number and evidetion number of the metal M in the complex	[2016]
9.	$[M(en)_2(C_2O_4)]Cl$ (where <i>en</i> is ethylenediamine) is:	[2015]
10.	The name of complex ion, $[Fe(CN)_6]^{3-}$ is : 1) Hexacyanoiron (III) ion 3) Tricyanoferrate (III) ion 4) Hexacyanidoferrate (III) ion 4) Hexacyanidoferrate (III) ion	[2015]
11.	The hybridization involved in complex $[Ni(CN)_4]^{2-}$ is (At. No. Ni = 28) 1) dsn^2 2) sn^3 2) d^2sn^2 4) d^2sn^3	[2015]
12.	Number of possible isomers for the complex $[Co(en)_2Cl_2]Cl$ will be $(en = ethylenediamine)$ 1) 2 2) 1 3) 3 4) 4	[2015]
13.	Cobalt (III) chloride forms several octahedral complexes with ammonia. Which of the following not give test of chloride ions with silver nitrate at 25 °C?	will [2015]
14.	1) $\tilde{\text{CoCl}_3} \cdot 4\text{NH}_3$ 2) $\tilde{\text{CoCl}_3} \cdot 5\text{NH}_3$ 3) $\tilde{\text{CoCl}_3} \cdot 6\text{NH}_3$ 4) $\tilde{\text{CoCl}_3} \cdot 3\text{NH}_3$ Which of these statements about $[\tilde{\text{Co}(\text{CN})_6}]^{3-}$ is true? 1) $[\tilde{\text{Co}(\text{CN})_6}]^{3-}$ has four unpaired electrons and will be in a low spin configuration	[2015]

15.	 2) [Co(CN)₆]³⁻ has four unpaired electrons and will be in a high spin configuration. 3) [Co(CN)₆]³⁻ has no unpaired electrons and will be in a high-spin configuration. 4) [Co(CN)₆]³⁻ has no unpaired electrons and will be in a low-spin configuration. Among the following complexes the one which shows zero crystal field stabilization energy (CFSE): 							
16. 17.	$[2014] 1) [Mn(H_2O)_6]^{3+} 2) [Fe(H_2O)_6]^{3+} 3) [Co(H_2O)_6]^{2+} 4) [Co(H_2O)_6]^{3+} $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-K_2[PtCl_2Br_2] 4) Na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_2] 3) cis-[PtCl_2Br_2] 4) na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCl_2(NH_3)_3Cl_3] 2) cis-[PtCl_2Br_2] 4) na_2CoCl_4 $ $[2014] 1) mer-[Co(NH_3)_3Cl_3] 2) cis-[PtCL_3Ch_3] 2) na_3Ch_3 $							
	(1) $t_{2}^4 e_{1}^2$	(2) t_{2}^{6}	e^0	(3) $e^{3}t_{2}^{3}$	(4) $e^4 t_2^2$			
18.	The Crystal Field Sta will be- $(1) 6000 \text{ cm}^{-1}$	abilisation Energ	r_{1}^{g} (CFSE) fo	r $[CoCl_6]^{4-}$ is 18	8000 cm^{-1} . The CI	FSE for [CoCl ₄]2 ⁻ [2019- ODISSA]		
19.	Match the coordinati based on Valence box	ion number and and theory.	type of hybri	disation with di	stribution of hybri	id orbitals in space [2020-COVID-19]		
	number and		of hybrid					
	typ <mark>e of</mark>		orbitals					
	hybridisation		in space	invramidal				
	2) 4, dsp^2		(i) ungonar ((ii) octahed	ral				
	3) 5, $sp^{3}d$		(iii) tetrahed	lral				
	4) 6, d^2sp^3	tion	(iv) square p	olanar				
20	Select the correct op (1) 1)-(ii) 2)-(iii) 3)-(i) (3) 1)-(iv) 2)-(i) 3)-(i) Which of the followi	tion : (iv) 4)-(i) ii) 4)-(iii) ing is the correct	$\begin{array}{c} (2) \\ (4) \\ (4) \end{array}$)-(iii) 2)-(iv) 3))-(iii) 2)-(i) 3)-	(i) 4)-(ii) (iv) 4)-(ii)	form coordination		
20.	compounds?	ing is the correct		reasing neid su	engui or nganus u	[2020]		
	1. $CN^{-} < C_2 O_4^{2-} < S$	$CN^- < F^-$		2. SCN ⁻ < .	$F^{-} < C_2 O_4^{2-} < C N^{-}$			
	$3. SCN^- < F^- < CN$	$V^{-} < C_2 O_4^{2-}$		$4. F^- < SCL$	$N^{-} < C_2 O_4^{2-} < C N^{-}$	-		
21.	Ethylene diaminetetr	caacetate (EDTA	.) ion is	2) Didentate	lines of which takes "	[NEET-2021]		
	3) Tridentate ligand	with three "N" d	lonor atoms	2) Bidentale	ligand with two	IN donor atoms		
	4) Hexadentate ligan	d with four "O"	and two "N'	' donor atoms				
22.	Match List – I with	List – II.				[NEET-2021]		
	List – I	List – II						
	a) $\left[Fe(CN)_{6}\right]^{3-}$	i) 5.92 BM						
	b) $\left[Fe(H_2O)_6\right]^{3+}$	ii) 0 BM						
	c) $\left[Fe(CN)_{6}\right]^{4-}$	iii) 4.90 BM						
	d) $\left[Fe(H_2O)_6\right]^{2+}$	iv) 1.73 BM						
23.	The IUPAC name of [Ag (H ₂ O) ₂] [Ag(C 1) dicyanidosilver(2) diaquasilver(II) of 3) dicyanidosilver(4) diaquasilver(I) d	of the complex [N] ₂] is: II) diaquaargen dicyanidoargen I) diaquaargent licyanidoargent	- ntate(II) ntate(II) tate(I) tate(I)			[NEET-2022]		

24. The order of energy absorbed which is responsible for the color of complexes
A)
$$\left[N(H_2O)_2(m)_2\right]^2$$
 B) $\left[N(H_2O)_4(m)\right]^{2+}$ and c) $\left[Ni(m)_3\right]^{2+}$ is
1)A > B > C 2) C > B > A 3) C > A > B 4) B > A > C

			NCERT	LINE BY	LINE Q	UESTIC	ONS -	- ANS	SWERS		
		(1.) b	(2.) d	(3.)	c	(4.)	a	(5.)	b	
		(6.) a	(7.) a	(8.)	a	(9.)	d	(10.)	а	
		(11.) a	(1	2.) c	(13.)	b	(14.)	d	(15.)	а	
		(16.) a	(1	7.) b	(18.)	b	(19.)	b	(20.)	с	
		(21.) a	(2	22.) a	(23.)	с	(24.)	b	(25.)	d	
		(26.) c	(2	27.) c	(28.)	с	(29.)	b	(30.)	d	
		(31.) a	(3	32.) a	(33.)	с	(34.)	с	(35.)	d	
		(36.) a	(3	7.) c	(38.)	b	(39.)	b	(40.)	а	
		(41.) b	(4	2.) c	(43.)	с	(44.)	a	(45.)	b	
		(46.) b	(4	7.) a	(48.)	c	(49.)	b	(50.)	b	
		Т	OPIC W	ISE PRA	CTICE	QUEST	IONS	- Al	SWER	S	
1)	4	2) 2	3) 2	4) 3	5) 1	6) 2	7)	1	8) 3	9) 4	10) 2
11)	2	12) 3	13) 2	14) 2	15)4	16) 4	17)3	18) 3	19) 1	20) 1
21)	3	22) 1	23) 3	24) 2	25) 1	26) 2	27)2	28) 3	29) 2	30) 4
31)	3	32) 1	33)1	34) 3	35)3	36) 3	37)2	<u>38) 2</u>	39) 2	40) 3
41)	1	42) 4 52) 1	4 3) 5 3) 4	44) 2 54) 1	45)2	46) 3	47)2	<u>48) </u> 59) 1	49) 4	50) 2
51) 61)	4	52) 1 62) 4	$\frac{55}{4}$	64) 2	65) 1	50) 4	67)	58) <u>1</u>	69) 1	00) 2 70) 1
01)	1	02)1			VEARS	OUES.		ς_ΛΝ	SWED	C	70)1
1)	2	2) 1	-3) 2		5) 2				8) 3	0) 1	10)/
11)1	12) 3	13) 4	14)4	15)2	16)2		7)2	18)4	(19) 2	$\frac{10}{4}$
21	.)4	22) 3	23) 4	24) 3	υÄ	Ú				y	
		N	NCERT L	INE BY	LINE QU	JESTIO	NS –	SOLI	JTION	S	
										F /	、+
(1.)	(b)) Complexe	s in which	a metal is b	ound to mor	re than on	e kind c	of donor	groups, e	e.g., [Co(N	$\left[\mathrm{H}_{3}\right]_{4}\mathrm{Cl}_{2}$
	are	e k <mark>now</mark> n as	heterolepti	c. Complex	es in which	a metal i	s bound	l to only	one kind	l of donor g	roups, e.g.,
	[0	$\operatorname{Co}(\operatorname{NH}_3)_6$	³⁺ are knov	vn as homo	leptic.						
(2.) (d) Δ tetrahedral = $\frac{1}{9} \times \Delta$ octahedral											
4.18000 8000											
$=-\times 18000 = 8000$ cm $^{\circ}$											
(3.)	(c)	Correct ma	atch is, P-(i	ii),Q-(i),R-((iii),S-(iv).						
(4.)	(4.) (a) Linkage isomers										
(6.) (a)											
Coordination number			Туре	Type of hybridisation			Distribution of hybrid orbitals in space			ls in	
4			sp ³	sp ³			Tetrahedral				

dsp²

sp³d

 sp^3d^2

4

5

6

Square planar

Octahedral

Trigonal bipyramidal

The order of absorption of wavelength of light in the visible region is:

 $\left[Co(H_2O)_6 \right]^{3+} > \left[Co(NH_3)_6 \right]^{3+} > \left[Co(CN)_6 \right]^{3-}$

(28.) (c) Octahedral complex of type $[MA_5B_2]$ cannot show geometrical isomerism.

(29.) (b) $\left[\operatorname{NiCl}_{2}(\operatorname{PPh}_{3})_{2}\right]$: Dichloridobis (triphenyl phosphine) nickel (II)

- $Hg[Co(SCN)_{4}]$: Mercury tetrathiocynato cobaltate(III)
- **(30.)** (d)

CrO₄²⁻ Cr⁶⁺ – Diamagnetic

CrO₇²⁻ Cr⁶⁺ – Diamagnetic

 $MnO_4^- Mn^{7+} - Diamagnetic$

 $MnO_4^{2-}Mn^{6+}$ – Paramagnetic

- In MnO_4^{2-} unpaired electron is present, therefore d-d transition is possible.
- (32.) (a) Since the coordination number of Mn^{2+} ion in the complex ion is 4, it will be either tetrahedral (sp³ hybridisation) or square planar (dsp² hybridisation). But the fact that the magnetic moment of the complex ion is 5.9 B.M., it should be tetrahedral in shape rather than square planar because of the presence of five unpaired electrons in the d-orbitals.
- (33.) (c) In a coordination entity of the type $\left[PtCl_2(en)_2 \right]^{2+}$, only the cis-isomer shows optical activity.
- (35.) (d) As 3 moles of AgCl are obtained when 1 mol of $CrCl_3 \cdot 6H_2O$ is treated with excess of AgNO₃ which shows that one molecule of the complex gives three chloride ions in solution. Hence, formula of the complex is $[Cr(H_2O)_6]Cl_3$.
- (37.) (c) Cobalt (Co) is the central metal in the complex $\left[Co(NH_3)_4(H_2O)CI \right] Cl_2$.
- (38.) (b) Coordination compounds are used as catalysts for many industrial processes. Examples include rhodium complex, $\lceil (Ph_3P)_3 RhCl \rceil$ a Wilkinson catalyst is used for the hydrogenation of alkenes.
- (39.) (b) Tetracarbonyl nickel(O) is tetrahedral, pentacarbonyl iron (0) is trigonal bipyramidal while hexacarbonyl chromium (0) is octahedral.
- (40.) (a) $\left[\operatorname{CoCl}_{2}(\operatorname{en})_{2}\right]$ has geometrical isomerism.

- (42.) (c) Mohr's salt: $\text{FeSO}_4 \cdot (\text{NH}_4)_2 \text{SO}_4 \cdot 6\text{H}_2\text{O}$
- (44.) (a) The primary valences are normally ionisable and are satisfied by negative ions while secondary valences are non-ionisable. These are satisfied by neutral molecules or negative ions. The secondary valence is equal to the coordination number and is fixed a metal.
- (45.) (b) Ionisation isomerism arises when the counter ion in a complex salt is itself a potential ligand and can displace a ligand which can then become the counter ion. An example is provided by the ionisation isomers $\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Cl}\right]\operatorname{SO}_4$ and $\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{SO}_4\right]\operatorname{Cl}$.
- (46.) (b) Hexaamminenickel(II) hexanitrocobaltate(III) can be written as $\left[\operatorname{Ni}\left(\operatorname{NH}_{3}\right)_{6}\right]_{3}\left[\operatorname{Co}\left(\operatorname{NO}_{2}\right)_{6}\right]_{2}$.
- (47.) (a) Out of $\operatorname{cis} \left[\operatorname{CrCl}_2(\operatorname{Ox})_2\right]^{3-}$ and $\operatorname{trans} \left[\operatorname{CrCl}_2(\operatorname{Ox})_2\right]^{3-}$, cis-isomer is chiral (optically active).
- (48.) (c) $\left[\text{Fe}(\text{CO})_4 \right]^{2-}$

Since metal atom is carrying maximum negative change therefore it would show maximum synergic bonding as a result C-O bond length would be maximum. (b) Primary compounds such as CrCl₃, CoCl₂ or PdCl₂ have primary valency of 3, 2 and 2 respectively. (49.) **TOPIC WISE PRACTICE QUESTIONS - SOLUTIONS** 1. 4) 2) $\left[Pt(NH_3)_4 Cl_2 \right] Br_2$ 2. Ionization isomer $\left[Pt(NH_3)_4 ClBr \right] Cl.Br$ Geometrical isomers 3. 2) 4. 3) Ni(CO), Ni(PPh,), Cl, Ni⁰ O.S Ni²⁻ E.C. [Ar]3d⁸4s² [Ar]3d⁸4s⁰ Pairing of e No pairing of e Hybridization sp³ (tetrahedral) sp³ (tetrahedral) 5. 1) The initial complex must have two Cl⁻ ions in cis position as the third Cl⁻ ion could replace an ammonia cis to both or trans to one giving two isomers. If two Cl⁻ ions were in the trans positions, the other four positions which could be replaced are equivalent and only one isomer of the product would be obtained. 2) $\left[Co(NH_3)_3 (NO_2)_3 \right] Cl_2$ complex exhibits geometrical isomerism (G.I.) 6. Geometrical isomers = $2(1 \operatorname{cis} + 1 \operatorname{trans})$ Optical isomers = 0Space isomers = 2 $\left[Co(NH_3)_5(NO_2) \right] Cl_2$ complex shows linkage and ionization isomerism. 7. 1) The compounds of the type $M(AA)_2 B_2$ exhibit both geometrical and optical isomerism 8. (3) Complex is not superimposable on its mirror image hence optically active i.e., rotate plane polarized light. 9. 4)

- 10. 2)Given compound shows meridional isomerism.
- 11. (2) Non –superimposable mirror images are optically active, hence rotate plane polarized light.

12. 3) $\left[Cr(SCN)_2 (NH_3)_4 \right]^+$ shows linkage, geometrical and optical isomerism. Hence produces maximum no. of isomers.

13. 2)

14. 2) Ionisation isomer of $[Cr(H_2O)_4 Cl(NO_2)]Cl is [Cr(H_2O)_4 Cl_2]NO_2$

15. 4)

16. 4) $\left[Ni(NH_3)_2 Cl_2 \right]$, Ni²⁺ is in sp³ hybridisation, thus tetrahedral in shape. Hence the four ligands are not

different to exhibit optical isomerism. In tetrahedral geometry all the positions are adjacent to one another

: geometrical isomerism also is not possible.

17. (3) Coordination isomerism occurs when cationic and anionic complexes of different metal ions are present in a salt. The two isomers differ in the distribution of ligands in cation and anion e.g.

 $\left[Co(NH_3)_6 \right] \left[Cr(CN)_6 \right]$ is an isomer of $\left[Co(CN)_6 \right] \left[Cr(NH_3)_6 \right]$

- Geometrical isomers of following type of square planar complexes is possible. Ma₂b₂ type, Ma₂bc type and Mabcd type.
- 19. (1) $[PdCl_4]^{2-}$ is dsp^2 hybridized and square planar in shape.
- 20. (1) $S_2 O_3^{2-}$ is a monodentate ligand whereas other ligands are bidentate.
- 21. (3) Similarity between optical and geometrical isomerism is that both are included in stereo isomerism.
- 22. (1)
- 23. 3) Coordination number of Cu^{2+} , Zn^{2+} and Fe^{2+} are 4, 4 and 6 respectively.

i. [Cu(H₂O)₄]SO₄.H₂O ; ii. [Zn(H₂O)₄]SO₄.H₂O ; iii. [Fe(H₂O)₆]SO₄.H₂O

- 24. (2) It is a double salt: FeSO_4 . $(\text{NH}_4)_2$ SO₄.6H₂O \rightarrow Fe²⁺ + 2SO₄²⁻ + 2NH₄⁺
- 25. 1)
- 26. 2)
- 26. (2) The crystal field splitting in tetrahedral complexes is lower than that in octahedral complexes, and

$$\Delta_{\rm t} = -\frac{4}{9}\Delta_0$$

27. (2) The complex formation is a characteristic of *d*-block elements. Lead is a *p*-block element hence does not forms complex compounds.

38. 2) CN⁻ is a strong field ligand as it is a pseudohalide ion. These ions are strong coordinating ligands and hence have the tendency to form σ -bond (from the pseudo halide to the metal) and π -bond (from the metal to pseudo halide) 2) Hydrated CoCl₂.6H₂O is pink coloured and contains octahedral $\left[Co(H_2O)_6 \right]^{2+}$ ions. If this is partially 39. dehydrated by heating, then blue coloured tetrahedral ions $\left[Co(H_2O)_4 \right]^{2+}$ are formed $\begin{bmatrix} \operatorname{Co}(\operatorname{H}_2\operatorname{O})_6 \end{bmatrix}^{2+} \rightleftharpoons \begin{bmatrix} \operatorname{Co}(\operatorname{H}_2\operatorname{O})_4 \end{bmatrix}^{2+} + 2\operatorname{H}_2\operatorname{O} \\ \underset{\text{pink}}{\text{blue}} \end{bmatrix}$ 40. 3) Higher the oxidation state of the metal, greater the crystal field splitting energy. In options 1), 2) and 4), Co is present in + 2 oxidation state and in 3) it is present in + 3 oxidation state and hence has a higher value of CFSE. 41. 1) 42. 4) d^4 in high spin octahedral complex \uparrow e_o \uparrow \uparrow \uparrow t_{2g} $CFSE = (-0.4x + 0.6y)\Delta_0$ Where, $x \rightarrow$ electrons in t_{2g} orbital $y \rightarrow$ electrons in e_g orbital $CFSE = [0.6 \times 1] + [-0.4 \times 3] = -0.6 \Delta_0$ 2) According to spectrochemical series $C_2 O_4^{2-} > F^-$ 43. 44. 2) 45. 3) $Cr^{2+} d^4$ 4 $Mn^{2+}d^5$ 5 ${\rm Fe}^{2+} d^{6}$ 4 $Co^{2+} d^7$ 3 Minimum paramagnetic behaviour = $[Co (H_2O)_6]^{2+}$ 46. 2) 1) $\left[\operatorname{Ni}(\operatorname{NH}_3)_6 \right]^{2+}$ 47. $Ni^{2+} = 3d^8$, according to $CFT = t_2^6 e_g^2$ therefore, hybridisation is sp^3d^2 and complex is paramagnetic. 48. 4) 2) $d^6: t_{2g}^{2,2,2} e_g^{0,0}$ (in low spin) 49. C.F.S.E = $-0.4 \times 6\Delta_0 + 3P = -\frac{12}{5}\Delta_0 + 3P$ 50. 4) Due to d^5 configuration CFSE is zero

www.alliantacademy.com

51. 1) Sc =
$$[Ar]3d^{1}, 4s^{2}$$

Oxidation state of Sc in $\left[Sc(H_2O)_6 \right]^{3+}$ is Sc^{3+}

$$Sc^{3+} = [Ar] 3d^0, 4s^0$$

Thus Sc^{3+} does not have unpaired electron, hence it is diamagnetic and colourless.

52. 4)

Co (NH₃)₅Cl₃ \rightleftharpoons [Co(NH₃)₅Cl]⁺² + 2Cl⁻ ∴ Structure is [Co (NH₃)₅ Cl] Cl₂. Now [Co(NH₃)₅Cl]Cl₂ + 2AgNO₃ \longrightarrow

- $[Co(NH_3)_5Cl](NO_3)_2 + 2AgCl$
- 53. 1) EDTA has hexadentate four donor O atoms and 2 donor N atoms and for the formation of octahedral complex one molecule is required
- 54. 2)
- 55. 4) K₂[Ni(EDTA)] Since EDTA is hexadentate and chelating and coordinates from six sides forming more stable complex.
- 56. 1) $\left[\operatorname{Co}(\operatorname{NH}_3)_5 \operatorname{CO}_3\right] \operatorname{ClO}_4$ Six monodentate ligands are attached to Co hence C.N. of Co = 6; O.N. = $x + 5 \times (0) + 1 \times (-2) + 1 \times (-1) = 0$ $\therefore x = +3$; electronic configuration of $\operatorname{Co}^{3+} [\operatorname{Ar}] \operatorname{3d}^6 \operatorname{4s}^0$ hence number of d electrons is 6. All d electrons are paired due to strong ligand hence unpaired electron is zero.
- 57.

1)

- 58. 4)
- 59. 2) Organometallic compound is 2) as it contains metalcarbon bonds. In others, direct link of carbon with metal is not present
- 60. 1) Triethoxyaluminium has no Al C linkage

$$Al \underbrace{\overset{O-CH_2CH_3}{\overbrace{O-CH_2CH_3}}}_{O-CH_2CH_3}$$

61. (4) Compounds that contain at least one carbon metal bond are called organometallic compounds. Hence, based on above definition methyl lithium is an organometallic compound. In other chemical

compounds, carbon is not linked with metal.

62. (4)

63. (2) Organometallic compounds are those compounds in which a metal is bonded directly to a carbon atom of a molecule. In chlorophyll there is bond between carbon and Mg.

64. (2) Compounds that contain at least one carbon metal bond are known as organometallic compounds. In CH₃-Mg-Br (Grignard's reagent) a bond is present between carbon and Mg (Metal) hence it is an organometallic compound.

66. (1) Structure of $\left[Co_2 (CO)_8 \right]$

- 67. (3) The chlorophyll molecule plays an important role in photosynthesis, contain porphyrin ring and the metal Mg not Ca.
- 68. (4)
- 69. 1) As positive charge on the central metal atom increases, the less readily the metal can donate electron density into the π^* orbitals of CO ligand (donation of electron density into π^* orbitals of CO result in weakening of C O bond). Hence, the C O bond would be strongest in [Mn(CO)₆]⁺.
- 70. 1) Grignard's reagent (RMgX) is a σ -bonded organometallic compound.

NEET PREVIOUS YEARS QUESTIONS-EXPLANATIONS

1. 2) $Fe(CO)_{5}$

EAN = Z - O.N. + 2(C.N) = 26 - 0 + 2(5) = 26 + 10 = 36

Only one central metal atom/ion is present and it follows EAN rule, so it is mononuclear. 1) In the given complex, the CN of Co is 6, and the complex has octahedral geometry.

$$e^{n} \xrightarrow{C_{1}} c^{n} \xrightarrow{e_{1}} c^{n} \xrightarrow{c_{2}} c^{n} \xrightarrow{c_{1}} c^{n$$

3. 2) Ni(28): $[Ar] 3d^8 4s^2$

 \therefore CO is a strong field ligand, so unpaired electrons get paired. Hence, configuration would be:

For, four 'CO'ligands hybridisation would be sp^3 and thus the complex would be diamagnetic and of tetrahedral geometry.

- 4. 1) Grignard's reagent (RMgX) is a s-bonded organometallic compound.
- 5.

2)

2.

 $\left\lceil \operatorname{Co}(\operatorname{NH}_3)_6 \right\rceil \operatorname{Cl}_3 \xrightarrow{\operatorname{AgNO}_3} \operatorname{3mol of AgCl}$

$$\left\lceil \operatorname{Co}(\operatorname{NH}_3)_5 \operatorname{Cl} \right\rceil \operatorname{Cl}_2 \xrightarrow{\operatorname{AgNO}_3} 2 \operatorname{mol} \text{ of AgCl}$$

 $\left\lceil \operatorname{Co}(\operatorname{NH}_3)_4 \operatorname{Cl}_2 \right\rceil \operatorname{Cl} \xrightarrow{\operatorname{AgNO}_3} \operatorname{1mol} \operatorname{of} \operatorname{AgCl}$

6. 4) The order of the ligand in the spectrochemical series $H_2O < NH_3 < en$ Hence, the wavelength of the light observed will be in the order

 $[Co(H_2O)_6]^{3+} < [Co(NH_3)_6]^{3+} < [Co(en)_3]^{3+}$

Thus, wavelength absorbed will be in the opposite order

i.e., [Co(en)₃]³⁺, [Co(NH₃)₆]³⁺, [Co(H₂O)₆]³⁺

7. 2) In the complex $\left[Mn(CN)_6 \right]^{3-}$, O.S. of Mn is +3 E.C. of $Mn^{+3} \rightarrow 3d^4$

The presence of a strong field ligand CN⁻ causes pairing of electrons.

As, coordination number of Mn = 6, so it will form an octahedral complex.

- 8. 3) $\left[\text{Fe}(\text{CO})_4 \right]^{2-}$ Since metal atom is carrying maximum –ve charge therefore it would show maximum synergic bonding as a resultant C—O bond length would be maximum.
- 9. $\left[M(en)_2(C_2O_4)\right]Cl$

 C_2O_4 = bidentate ligand, carry – 2 charge

en = bidentate ligand, carry 0 charge

 \therefore M carry + 3 charge;

coordination number = 6

- :. Sum = +3 + 6 = 9
- 10. (4) Carbocation Hexacyanidoerrate (III) ion.

11. 1) Ni²⁺ =
$$[Ar]^{18} 4s^0 3d^8$$

Valence bond theory can be used to predict shape.

(In presence of ligand, pairing of electron occurs)

∴ Square planar.

13. 4) $CoCl_3.3NH_3$ will not give test for chloride ions with silver nitrate due to absence of ionisable chloride atoms.

$$\operatorname{CoCl}_3.3\operatorname{NH}_3 \Rightarrow \left[\operatorname{Co}(\operatorname{NH}_3)_3\operatorname{Cl}_3\right]$$

 $\left[\operatorname{Co}(\operatorname{NH}_3)_3\operatorname{Cl}_3\right] \xrightarrow{\operatorname{AgNO}_3} \operatorname{no} \operatorname{ppt}$

14. 4) In
$$\left[Co(CN)_{6} \right]^{-3}$$
 O.N. of Co is +3

 $\therefore Co^{+3} = 3d^6 4s^0$

 CN^{-} is a strong field ligand

∴ Pairing of electrons occurs so in this complex no unpaired electron is present and it is low spin complex.

15. 2) Due to d^5 configuration CFSE is zero.

16. 2)

17. 2)

In K₄[Fe(CN)₆]

 $Fe(26) = 3d^6 4s^2$

 $Fe^{+2} = 3d^6$

in presence of SFL $3d^6 \rightarrow \, t^6_{2g} e^0_{_g}$

 $\Delta_{\text{tetrahedral}} = \frac{4}{9} \times \Delta_{\text{octahedral}}$ $= \frac{4}{9} \times 18000$ $= 8000 \text{ cm}^{-1}$

19. 2)sp³- tetrahedral, dsp² - square planar
sp³d - trigonal bipyramidal, d²sp³-octahedral

